Title page for ETD etd-05112009-180421


Type of Document Dissertation
Author Herbert, Andrew Scott
Author's Email Address asherbert@vt.edu
URN etd-05112009-180421
Title Cytokine-bearing Influenza Vaccine: Adjuvant Potential of Membrane-bound Immunomodulators
Degree PhD
Department Biomedical and Veterinary Sciences
Advisory Committee
Advisor Name Title
Roberts, Paul Christopher Committee Chair
Meng, Xiang-Jin Committee Member
Myles, Kevin M. Committee Member
Witonsky, Sharon G. Committee Member
Keywords
  • influenza
  • viral vaccine
  • membrane-bound cytokines
  • vaccine adjuvant
  • immunomodulatory protein
Date of Defense 2009-04-27
Availability unrestricted
Abstract
Influenza epidemics continue to cause morbidity and mortality within the human population despite widespread vaccination efforts. This, along with the ominous threat of an avian influenza pandemic (H5N1), demonstrates the need for a much improved, more sophisticated influenza vaccine. Our group has developed an in vitro model system for producing a membrane-bound Cytokine-bearing Influenza Vaccine (CYT-IVAC). Numerous cytokines are involved in directing both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines and other immunomodulatory proteins to create a more immunogenic vaccine. Here we report methodologies for the construction of membrane-bound cytokine fusion constructs in which our cytokine of interest (mouse GM-CSF, mouse IL-2, mouse IL-4) was fused to the membrane anchoring regions of viral Hemagglutinin (HA). Progeny virions, produced from influenza infected MDCK cells expressing membrane-bound cytokines, readily incorporated membrane-bound cytokines during budding and these cytokines on the virus particles retained bioactivity following viral inactivation. In vivo vaccination studies in mice showed enhanced antibody titers and improved protection following lethal challenge in those mice vaccinated with IL-2 and IL-4-bearing CYT-IVAC’s compared to the conventional wild-type vaccine without membrane-bound cytokines. In addition, the immune response induced by IL-2 and IL-4-bearing CYT-IVACs was skewed toward Th1 (cellular) mediated immunity compared to the Th2 (humoral) dominated response induced with wild-type vaccination. Cellular mediated immunity afforded by IL-2 and IL-4 CYT-IVACs was manifested as enhanced influenza specific T cell proliferation and activation. In conclusion, we have developed a novel methodology to introduce bioactive membrane-bound cytokines directly into virus particles in order to augment the immunogenicity of inactivated, whole virus influenza vaccines.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  AndrewHerbertDissertation.pdf 25.55 Mb 01:58:17 01:00:49 00:53:13 00:26:36 00:02:16

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.