Title page for ETD etd-05132009-165205


Type of Document Master's Thesis
Author Drew, Christopher W.
Author's Email Address cdrew@vt.edu
URN etd-05132009-165205
Title Mechanical Loading for Modifying Tissue Water Content and Optical Properties
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Rylander, Christopher G. Committee Chair
Wang, Ge Committee Member
West, Robert L. Jr. Committee Member
Keywords
  • Tissue
  • Compression
  • Water Content
  • Finite Element
  • Dermis
  • Mechanical Loading
Date of Defense 2009-05-04
Availability unrestricted
Abstract
The majority of the physical properties of tissue depend directly on the interstitial or intracellular concentration of water within the epidermal and dermal layers. The relationship between skin constituent concentrations, such as water and protein, and the mechanical and optical properties of human skin is important to understand its complex nature. Localized mechanical loading has been proven to alter optical properties of tissue, but the mechanisms by which it is accomplished have not been studied in depth.

In this thesis, skin’s complex nature is investigated experimentally and computationally to give us better insight on how localized mechanical loading changes tissues water content and its optical properties. Load-based compression and subsequent increased optical power transmission through tissue is accomplished to explore a relationship between localized mechanical loading and tissue optical and mechanical properties. Using Optical Coherence Tomography (OCT), modification of optical properties, such as refractive index, are observed to deduce water concentration changes in tissue due to mechanical compression. A computational finite element model is developed to correlate applied mechanical force to tissue strain and water transport. Comprehensive understanding of the underlying physical principles governing the optical property changes within skin due to water concentration variation will enable future development of applications in the engineered tissue optics field.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ThesisETDFinal.pdf 1.90 Mb 00:08:47 00:04:31 00:03:57 00:01:58 00:00:10

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.