Title page for ETD etd-05232001-170607


Type of Document Master's Thesis
Author Stewart, Morgan Eugene
URN etd-05232001-170607
Title Validation of a Simplified Building Cooling Load Model Using a Complex Computer Simulation Model
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Ellis, Michael W. Committee Co-Chair
Thomas, William C. Committee Co-Chair
Jones, James R. Committee Member
Keywords
  • Cooling Load Profiles
  • : Building Cooling Loads
  • Building Simulations
Date of Defense 2001-04-26
Availability unrestricted
Abstract
Building energy simulation has become a useful tool for predicting cooling, heating and electrical loads for facilities. Simulation models have been validated throughout the years by comparing simulation results to actual measured values. The simulations have become more accurate as approaches were changed to be more comprehensive in their ability to model building features. These simulation models tend to require considerable experience in determining input parameters and large amounts of time to construct the models.

As a result of the large number of man-hours required, simplified models have been sought and used. Simplified models are particularly useful for conducting preliminary assessments of energy conservation measures. These simplified models often use linear relationships in order to estimate conditions such as infiltration, energy usage, and temperature gradients. Studies have been performed in order to validate popular models such as ASHRAE’s Bin or Modified Bin methods. A useful measure would be to determine the accuracy of a simplified model to establish error bounds. Having a simplified model and establishing its error bounds, technical estimations from such models could be used in selected applications with more confidence.

The error bound relative to DOE-2 predictions, for a proposed simplified model denoted IEC, for estimating a commercial building’s cooling load are presented along with two actual-building test cases for validation purposes. The sensitivity of the error to various building parameters such as minimum make-up air, cooling capacity oversize, and internal equipment load was investigated. The error bound was determined to be within ±15 per cent for both cases and almost all variations.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  MS_Thesis.PDF 1.78 Mb 00:08:13 00:04:13 00:03:41 00:01:50 00:00:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.