Title page for ETD etd-05252006-150116


Type of Document Master's Thesis
Author Al-Ghamdi, Nasser Mohammad
Author's Email Address nassgh@vt.edu
URN etd-05252006-150116
Title Facies, Sequence Framework, and Evolution of Rudist Buildups, Shu''aiba Formation, Saudi Arabia
Degree Master of Science
Department Geosciences
Advisory Committee
Advisor Name Title
Read, James Fredrick Committee Chair
Eriksson, Kenneth A. Committee Member
Law, Richard D. Committee Member
Keywords
  • Sequence Framework
  • Shu'aiba Formation
  • Saudi Arabia
  • Facies
  • and Evolution of Rudist Buildups
Date of Defense 2006-05-19
Availability unrestricted
Abstract
The Cretaceous (Early Aptian) Shu'aiba Formation, Shaybah field, Saudi Arabia, is 60 km long by 12 km wide and 150 m thick, and is a giant carbonate reservoir. It formed on a regional carbonate ramp bordering an intrashelf basin. The succession consists of a composite sequence of seven high frequency sequences. Sequences 1 and 2 formed a deeper open platform of Palorbitolina-Lithocodium wackestone, with maximum flooding marked by planktic foram mudstone. Sequence 2 built relief over northern and southern blocks, separated by an intraplatform depression. They form the composite sequence TST. The remaining sequences developed a platform rimmed by rudist rudstone backed by rudist floatstone back-bank and lagoonal fine skeletal peloidal packstone; slope facies are fine skeletal fragmented packstone. Aggradational sequences 3 to 5 make up the composite sequence early highstand. Progradational sequences 6 and 7 are the composite sequence late highstand marking the deterioration of the Offneria rudist barrier and deposition of widespread lagoonal deposits, where accommodation may have been created by syn-depositional growth faulting that moved the northern block down. Shu'aiba deposition on the platform was terminated by long-term sea-level fall and karsting.

The succession is dominated by approximately 400 k.y., 4th order sequences and 100 k.y. parasequences driven by long term eccentricity and short term eccentricity respectively, similar to the Pacific guyots of this age. This suggests that early Cretaceous climate may have been cooler and had small ice sheets and was not an ice-free greenhouse world.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  CompleteShuaibaThesis.pdf 4.65 Mb 00:21:30 00:11:03 00:09:40 00:04:50 00:00:24

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.