Title page for ETD etd-05252006-170303


Type of Document Master's Thesis
Author Riggins, Jamie N.
URN etd-05252006-170303
Title Location Estimation of Obstacles for an Autonomous Surface Vehicle
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Stilwell, Daniel J. Committee Chair
Baumann, William T. Committee Member
Wyatt, Christopher L. Committee Member
Keywords
  • feature localization
  • omni-directional camera
  • Extended Kalman Filter
  • autonomous surface vehicle
Date of Defense 2006-05-12
Availability unrestricted
Abstract
As the mission field for autonomous vehicles expands into a larger variety of territories, the development of autonomous surface vehicles (ASVs) becomes increasingly important. ASVs have the potential to travel for long periods of time in areas that cannot be reached by aerial, ground, or underwater autonomous vehicles. ASVs are useful for a variety of missions, including bathymetric mapping, communication with other autonomous vehicles, military reconnaissance and surveillance, and environmental data collecting.

Critical to an ASV's ability to maneuver without human intervention is its ability to detect obstacles, including the shoreline. Prior topological knowledge of the environment is not always available or, in dynamic environments, reliable. While many existing obstacle detection systems can only detect 3D obstacles at close range via a laser or radar signal, vision systems have the potential to detect obstacles both near and far, including "flat" obstacles such as the shoreline. The challenge lies in processing the images acquired by the vision system and extracting useful information. While this thesis does not address the issue of processing the images to locate the pixel positions of the obstacles, we assume that we have these processed images available. We present an algorithm that takes these processed images and, by incorporating the kinematic model of the ASV, maps the pixel locations of the obstacles into a global coordinate system. An Extended Kalman Filter is used to localize the ASV and the surrounding obstacles.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis.pdf 15.14 Mb 01:10:06 00:36:03 00:31:32 00:15:46 00:01:20

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.