Title page for ETD etd-06012005-211726


Type of Document Master's Thesis
Author Lieber, Matthew Joshua
Author's Email Address mlieber@vt.edu
URN etd-06012005-211726
Title Immunological Crosstalk between Human Transforming Growth Factor-â1 and the Malaria Vector Anopheles stephensi
Degree Master of Science
Department Biochemistry
Advisory Committee
Advisor Name Title
Luckhart, Shirley Committee Chair
Gillaspy, Glenda E. Committee Member
Huckle, William R. Committee Member
McDowell, John M. Committee Member
Tu, Zhijian Jake Committee Member
Keywords
  • TGF-â
  • Anopheles
  • Smad
  • nitric oxide synthase
  • BMP
  • signaling
  • malaria
Date of Defense 2005-05-23
Availability restricted
Abstract
The emergence of pesticide-resistant mosquitoes and drug-resistant parasites in the last twenty years has made control of malaria more difficult. One novel strategy to better control malaria is the development and release of transgenic mosquitoes whose enhanced immunity prevents transmission of the parasite to the mammalian host. One candidate effector gene is Anopheles stephensi nitric oxide synthase (AsNOS), whose inducible expression and subsequent synthesis of nitric oxide (NO) limits Plasmodium development in A. stephensi.

In mammals, one of the most potent physiological regulators of NOS gene expression and catalytic activity is transforming growth factor-â (TGF-â). Moreover, human TGF-â can activate Drosophila melanogaster Smads, the proteins responsible for TGF-â signal transduction. We have determined that following a bloodmeal, active human TGF-â1 (hTGF-â1) persists in the midgut of A. stephensi for up to 48 hours. My data demonstrate that the midgut epithelium recognizes hTGF-â1 as an immunomodulatory cytokine. Specifically, induction of AsNOS by hTGF-â1 occurs in the midgut within minutes of bloodfeeding. Moreover, hTGF-â1 limits development of the human malaria parasite Plasmodium falciparum in the midgut. In other experiments, provision of the AsNOS catalytic inhibitor L-NAME partially reverses the effect of hTGF-â1 on Plasmodium development. These results suggest that AsNOS is a target of hTGF-â1 signaling and additional effectors that impact parasite development may be regulated by hTGF-â1 as well.

The fact that hTGF-â1 signals mosquito cells to limit malaria parasite development suggests that there is an endogenous TGF-â signaling network in place. An analysis of the A. gambiae genome database revealed the presence of six TGF-â ligands, including gene duplication in the 60A gene, the first evidence of ligand gene duplication outside of chordates. In addition to five receptors, three Smads were identified in the A. gambiae genome predicted to support TGF-â/Activin- and BMP-like signaling. Midgut epithelial cells and an immunocompetent A. stephensi cell line express all three Smads, confirming that a signaling pathway is in place to support signaling by divergent exogenous and endogenous TGF-â superfamily proteins.

The results presented here provide the first evidence of immunological crosstalk between divergent free living hosts of a single parasite. Further, these results imply that the interface between mammals and the mosquitoes that feed on them provide a unique opportunity for circulating molecules in the blood, including TGF-â and other cytokines, to alter the mosquito immune response

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] ImmunologicalCrosstalkBetweenHumanTransformingGrowthFactorBeta1andtheMalariaVectorAnophelesstephensi.pdf 2.23 Mb 00:10:18 00:05:17 00:04:38 00:02:19 00:00:11
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.