Title page for ETD etd-06032003-121242


Type of Document Dissertation
Author Byrd, Chad Michael
URN etd-06032003-121242
Title Reaction chemistry of C1 hydrocarbon fragments and oxygenates on Cr2O3 (1012).
Degree PhD
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Cox, David F. Committee Chair
Davis, Richey M. Committee Member
Deck, Paul A. Committee Member
Dillard, John G. Committee Member
Hochella, Michael F. Jr. Committee Member
Keywords
  • methyl
  • carbene
  • methylene
  • formaldehyde
  • halocarbons
Date of Defense 2003-06-02
Availability unrestricted
Abstract
The reactions of iodomethane, diiodomethane, and formaldehyde over stoichiometric, O-terminated, and Cl-terminated á-Cr2O3 surfaces, were studied by thermal desorption spectroscopy. Adsorbed formaldehyde forms dioxymethylene species on the nearly-stoichiometric surface that react primarily above 600 K. Dioxymethylene decomposes via a Cannizzaro-type process with dehydrogenation to formate, and hydrogenation to methoxide. Methoxide hydrogenation produces methane and methanol near 670 K. Formate decomposition occurs at 720 K, producing acetylene, carbon monoxide, carbon dioxide and formic acid. The site requirements for these reactions are a cation/anion site pair. When the surface cations are capped with Cl, the reactivity associated with dioxymethylene intermediates above 600 K is not observed. At higher coverages, polymerization to paraformaldehyde is observed on both surfaces, and decomposition to formaldehyde is observed at 400 K in thermal desorption. Iodomethane and diiodomethane are used as sources of methyl and methylene surface species, respectively. Methyl fragments on the stoichiometric surface dehydrogenate to surface methylene and hydrogen as a rate limiting step to produce ethylene and methane at 505 K. On the oxygen-terminated surface, the methyl fragments undergo dehydrogenation and coupling to ethylene at 425 K, undergo oxygen insertion to formaldehyde at 425 K, and produce carbon dioxide, formic acid, and water above 700 K from the dehydrogenation of formate. Methylene fragments on the stoichiometric surface undergo diffusion limited coupling to ethylene at 390 to 490 K and produce methane at 520 K from dehydrogenation. On the oxygen-terminated surface, methylene undergoes oxygen insertion to produce formaldehyde at 450 K, produce carbon monoxide, formaldehyde, and water at 695 K from dioxymethylene dehydrogenation, and produce carbon dioxide, formic acid, and water above 700 K from the dehydrogenation of formate.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  chadmbyrd.pdf 1.95 Mb 00:09:02 00:04:38 00:04:03 00:02:01 00:00:10

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.