Title page for ETD etd-06062008-164937


Type of Document Dissertation
Author Kim, ChulHwan
URN etd-06062008-164937
Title Azotobacter vinelandii nitrogenase :role of the MoFe protein [alpha]-subunit histidine-195 residue in catalysis
Degree PhD
Department Biochemistry and Anaerobic Microbiology
Advisory Committee
Advisor Name Title
Dean, Dennis R. Committee Chair
Anderson, Bruce M. Committee Member
Chen, Jiann-Shin Committee Member
Newton, William E. Committee Member
Sitz, Thomas O. Committee Member
Keywords
  • Nitrogen
Date of Defense 1994-06-05
Availability restricted
Abstract

Site-directed mutagenesis and gene replacement procedures were used to isolate mutant strains of Azotobacter vinelandii that produce altered MoFe proteins where the α-subunit residue-195 position, normally occupied by a histidine residue, was individually substituted by a variety of other amino acids. Structural studies have revealed that this histidine residue is associated with the FeMo-cofactor binding domain and probably provides an NH->S hydrogen bond to a central bridging sulfide located within FeMo-cofactor. The present study investigates the role of the α-histidine-195 residue in nitrogenase catalysis by examining the altered MoFe proteins.

Comparisons of the catalytic and spectroscopic properties of altered MoFe proteins produced by the Azotobacter vinelandii mutant strains suggest that the α-histidine-195 residue has a structural role which serves to keep the FeMo-cofactor attached to the MoFe protein and to correctly position the FeMo-cofactor within the polypeptide matrix such that N2 binding is accommodated. Substitution of the α-His-195 residue by a glutamine residue results in an altered MoFe protein that binds but does not reduce N2, the physiological substrate. Stopped-flow spectroscopic analyses indicate that the α-195gln MoFe protein is unable to reduce N2 even though the altered MoFe protein can reach the redox state necessary for N2 reduction. Although, N2 is not a substrate for the altered MoFe protein, it is an inhibitor of both acetylene and proton reduction, both of which are otherwise effectively reduced by the altered MoFe protein. This result provides evidence that N2 inhibits proton and acetylene reduction by simple occupancy of the active site. The α-195gln MoFe protein catalyzes HD fonnation in the presence of N2 and D2. Moreover, N2 binding at the active site of the altered MoFe protein is inhibited by the addition of D2. These observations indicate that binding of nitrogen to the enzyme is necessary but its reduction is not required for the formation of HD. N2 uncouples MgATP from proton reduction catalyzed by the α-195gln MoFe protein, but does so without lowering the overall rate of MgA TP hydrolysis. Thus, the quasi-unidirectional flow of electrons from the Fe protein to the MoFe protein that occurs during nitrogenase turnover is controlled, in part, by the substrate serving as an effective electron sink. N2-induced uncoupling of ATP hydrolysis from substrate reduction by the α-195gln MoFe protein is reversed by the addition of H2 (D2) in the assay atmosphere. This observation can successfully be explained if it-is assumed that the altered MoFe protein has a much greater binding affmity for H2 (D2) than for N2. Substitution of the α-histidie-195 residue by glutamine also imparts hypersensitivity of acetylene reduction and N2 binding to inhibition by CO, indicating that the imidazole group of the ahistidine- 195 residue might protect an Fe contained within FeMo-cofactor from attack by CO.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V856_1994.K562.pdf 8.35 Mb 00:38:38 00:19:52 00:17:23 00:08:41 00:00:44
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.