Title page for ETD etd-06062008-165934


Type of Document Dissertation
Author Gradzki, Pawel Miroslaw
URN etd-06062008-165934
Title Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications
Degree PhD
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Lee, Fred C. Committee Chair
Chen, Dan Y. Committee Member
Cho, Bo H. Committee Member
Hendricks, Robert W. Committee Member
Stephenson, Frederick W. Committee Member
Keywords
  • Electric transformers
Date of Defense 1992-03-30
Availability restricted
Abstract

An impedance-based core loss measurement technique for power ferrites, the modeling and analysis of mechanisms of high-frequency losses, and design methodology for optimization for high-frequency magnetics are presented.

The high-frequency losses of ferrite materials are characterized employing a large-signal impedance measurement technique. The impedance analyzer controlled through an IEEE-488 interface, measures the impedance of the inductor under test under large signal excitation via a power amplifier. The core loss is a form of a parallel resistance is derived from measured impedance characteristics. A wideband impedance probe, enables core loss characterization up to 100 MHz.

A comprehensive analysis of all major loss mechanisms in ferrites is presented. A new form of residual losses due to a magnetoelectric effect is postulated to account for losses at high frequencies. Two models of losses in ferrites are proposed, one with emphasis on analysis of loss mechanisms, and the other with an emphasis on the design of high-frequency magnetic components. Both models include the important effect of static bias field, which is the case in many power electronics applications. Magnetic losses due to magnetostriction are measured.

Dependence of magnetoelastic resonances on the magnetic bias. core material, core shape and size is studied. The influence of diffusion after-effect on core loss under time-varying bias field is investigated.

Thermal stability of high-frequency magnetics is studied. A verification of one- and two- dimensional models of winding losses for solid and litz wire is performed. The optimum design method for high-frequency power transformers and inductors is proposed.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V856_1992.G722.pdf 9.26 Mb 00:42:53 00:22:03 00:19:18 00:09:39 00:00:49
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.