Title page for ETD etd-06082009-160017


Type of Document Dissertation
Author Williams, Joshua W.
URN etd-06082009-160017
Title Multi-tiered Regulation of luxR Provides Precise Timing and Maintenance of the Quorum Sensing Response of Vibrio fischeri
Degree PhD
Department Biology
Advisory Committee
Advisor Name Title
Stevens, Ann M. Committee Chair
Kulkarni, Rahul V. Committee Member
Larson, Timothy J. Committee Member
Popham, David L. Committee Member
Keywords
  • bistability
  • quorum sensing
  • hysteresis
  • LuxR
  • CsrA
Date of Defense 2009-06-04
Availability restricted
Abstract
The quorum-sensing response of Vibrio fischeri involves a complex network of genes (encoding regulatory proteins as well as sRNAs), that govern host-association and production of bioluminescence. A key regulator of this system is LuxR, which is the transcriptional activator of the lux operon as well as several other genes in. LuxR also autoregulates its own transcription, which we have shown causes bistability and hysteresis in the quorum-sensing response. This behavior allows the system to maintain a stable and robust response in the face of environmental fluctuation or decreases in external autoinducer concentration caused by other sources. There are many factors that are known to regulate luxR expression, including the ArcA redox-responsive regulator, the cAMP-CRP secondary metabolism regulator, and components of the quorum-sensing pathway like LitR. Because of this, LuxR levels are critical in both the timing of quorum-sensing induction, as well as the maintenance of the response over time. This makes it a potential target for multiple levels of regulation in response to factors such as environmental and metabolic conditions, as well as other components of the quorum-sensing network.

Another important global regulatory protein in V. fischeri (and most other species of Gram-negative proteobacteria) is the post-transcriptional regulator CsrA. CsrA controls processes involved in carbon storage and utilization, as well as the transition from exponential to stationary phase growth. We have demonstrated that CsrA is regulated by two sRNAs (CsrB1 and CsrB2) in V. fischeri. Because CsrA regulates changes in cell behavior and is an important metabolic regulator, there is a good possibility that it has some interactions with the quorum-sensing regulon, whose endproduct, bioluminescence, creates a large metabolic demand from the cell.

In an effort to determine at which point in the quorum-sensing regulatory network CsrA regulation is important, epistasis experiments were designed using factorial design, which is a subset of statistical analysis of variance (ANOVA). This method was used to generate a high degree of confidence in the data, so that even minor interactions in the regulatory networks could be established. By altering the levels of CsrA expression in various mutant strains of V. fischeri, we have demonstrated that CsrA acts by an unknown mechanism to increase the transcription of luxR when the quorum-sensing regulator LitR is absent. Our results also demonstrated that CsrA mediates this effect through repression of ArcA activity, which is known to act directly on the luxR and luxI intergenic region as a repressor. This indicates that CsrA may bypass the upstream parts of the quorum-sensing regulatory cascade that lead to litR activation, so that LitR and LuxR may be regulated differently in response to certain conditions.

This work has shown that the interactions between global regulons can coordinately control the amount of quorum-sensing induction by affecting the level of LuxR in the cell. The balance of these regulatory networks allows the cell to tightly regulate the quorum-sensing response. Thus, LuxR serves as a critical regulatory hub in the cell, at which multiple signals can be integrated in order to generate the appropriate cellular response.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] JWWThesis6809.pdf 7.91 Mb 00:36:36 00:18:49 00:16:28 00:08:14 00:00:42
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.