Title page for ETD etd-06122010-020608


Type of Document Master's Thesis
Author Averill, Ronald C.
URN etd-06122010-020608
Title On the behavior of shear deformable plate elements
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Reddy, Junuthula N. Committee Chair
Griffin, Odis Hayden Jr. Committee Member
Smith, Charles W. Committee Member
Keywords
  • Plates (Engineering)
Date of Defense 1989-07-05
Availability restricted
Abstract

An investigation of the behavior of shear deformable plate finite elements is conducted to determine why and under what conditions these elements lock, or become overly stiff. For this purpose, a new analytical technique is developed to derive the exact form of the shear constraints which are imposed on an element when its side-tothickness ratio is large. The constraints are expressed in terms of the nodal degrees of freedom, and they are easily interpreted as being either the proper Kirchhoff constraints or spurious locking constraints. Moreover, the technique is applicable to any displacement-based shear deformable beam, plate or shell element regardless of the shear deformation theory or the order of the Gauss-Legendre integration rule which is used to numerically evaluate the stiffness coefficients.

To gain a better linderstanding of locking phenomena, the constraints which arise under full and reduced integration are derived for various Mindlin and Reddy-type beam and plate elements. These analytical findings are then compared with numerical results of isotropic and laminated composite plates, verifying the role that shear constraints play in determining the behavior of thin shear deformable elements. The results of the present study lead to definitive conclusions regarding the origin of locking phenomena and the effect of reduced integration.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1989.A837.pdf 4.14 Mb 00:19:09 00:09:51 00:08:37 00:04:18 00:00:22
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.