Title page for ETD etd-06122012-154308


Type of Document Master's Thesis
Author Garrison, Kevin Lee
Author's Email Address kg5kg@vt.edu
URN etd-06122012-154308
Title Design, Fabrication, and Validation of Membrane-Based Sensors
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Leo, Donald J. Committee Chair
Grant, John Wallace Committee Member
Sarles, Stephen A. Committee Member
Tarazaga, Pablo A. Committee Member
Keywords
  • membrane-based senso
  • phospholipids
  • cell membrane
  • hair cell sensor
  • bilayer lipid membrane
Date of Defense 2012-06-04
Availability unrestricted
Abstract
Hair cell structures are one of the most common forms of sensing elements found in nature. In humans, approximately 16,000 auditory hair cells can be found in the cochlea of the ear. Each hair cell contains a stereocilia, which is the primary structure for sound transduction. This study looks to develop and characterize a bilayer lipid membrane (BLM) operated artificial hair cell sensor that resembles the stereocilia of the human ear. To develop this sensor, a flexible substrate with internal compartments for hosting the biomolecules and mating cap are constructed and experimentally characterized. The regulated attachment method (RAM) is used to form bilayers within the sealed device. Capacitance measurements of the encapsulated bilayer show that the sealing cap slightly compresses the bottom insert and reduces the size of the enclosed bilayer. Single channel measurements of alamethicin peptides further verify that the encapsulated device can be used to detect the gating activity of transmembrane proteins in the membrane.

The flexible substrate was incorporated into a low-noise, portable test fixture. The response of the sensor and tip velocity of the hair were measured with respect to an impulse input on the test fixture and several frequency response functions (FRFs) were created. The FRF between the sensor and the tip velocity was used to show that the hair vibration was transmitted to the bilayer for certain hair lengths. The transfer function between the sensor and the input was used to show the effect of membrane potential on sensor response.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Garrison_KL_T_2012.pdf 7.31 Mb 00:33:51 00:17:24 00:15:14 00:07:37 00:00:39
  Garrison_KL_T_2012_Copyright1.pdf 9.13 Kb 00:00:02 00:00:01 00:00:01 < 00:00:01 < 00:00:01
  Garrison_KL_T_2012_Copyright2.PDF 16.18 Kb 00:00:04 00:00:02 00:00:02 00:00:01 < 00:00:01
  Garrison_KL_T_2012_Copyright3.pdf 26.29 Kb 00:00:07 00:00:03 00:00:03 00:00:01 < 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.