Title page for ETD etd-062499-200746


Type of Document Master's Thesis
Author Patel, Sneha Ramesh
Author's Email Address snpatel@vt.edu
URN etd-062499-200746
Title Durability of Advanced Woven Composites in Aerospace Applications
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Case, Scott W. Committee Chair
Lesko, John J. Committee Member
Reifsnider, Kenneth L. Committee Member
Keywords
  • Composites
  • Woven
  • Fatigue
  • Environmental
  • Durability
Date of Defense 1999-06-16
Availability unrestricted
Abstract
The objective of this project was to evaluate and model the effects of moisture, temperature, and combined hygrothermal aging on the durability of a graphite/epoxy woven composite material system. Imposed environmental and aging conditions were considered to be representative of service conditions for the engine of an advanced subsonic aircraft for which the composite system is a candidate material. The study was designed such that the results could be used in a residual strength based life prediction approach that accounted for both the mechanical fatigue and environmental conditions. Damage mechanisms and failure modes were determined through fatigue testing, residual strength testing, and nondestructive evaluation. The experimental data generally revealed little effect of environment on strength degradation during fatigue despite notable differences in damage accumulation processes.

Modeling efforts were concentrated on initial stiffness, moisture uptake, and residual strength prediction, where the results from the first two efforts were intended to generate inputs for the life prediction. The Ishikawa and Chou fiber undulation and bridging model [22] was shown to provide an accurate stiffness prediction and was subsequently used in parametric studies to determine the effect of weave architecture and geometry. A moisture uptake model developed by Roy [16] for laminates containing single direction cracks was extended to predict moisture uptake in laminates containing cracks in directions parallel and transverse to the loading direction. The life prediction approach was based on ideas developed by Reifsnider and colleagues [36,37,43]. The intention in this case was to use the critical element paradigm to predict the combined effects of alternating environmental (temperature and moisture) conditions imposed during fatigue. Since experimental results indicated that temperature and moisture did not significantly affect the strength and life of the material, a successful life prediction analysis was performed as a function of only fatigue stress level and cycles.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  kjl.pdf 1.67 Mb 00:07:43 00:03:58 00:03:28 00:01:44 00:00:08

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.