Title page for ETD etd-07062005-161028


Type of Document Master's Thesis
Author Hensley, Gregory Martin
URN etd-07062005-161028
Title Finite Element Analysis of the Seismic Behavior of Guyed Masts
Degree Master of Science
Department Civil Engineering
Advisory Committee
Advisor Name Title
Plaut, Raymond H. Committee Chair
Roberts-Wollmann, Carin L. Committee Member
Sotelino, Elisa D. Committee Member
Keywords
  • Mast
  • Finite Element
  • Synthetic Fiber Ropes
  • Seismic Response
  • Guy Wires
Date of Defense 2005-06-16
Availability unrestricted
Abstract
Seismic design of guyed masts, commonly used in the broadcasting and telecommunications industries, has not been fully addressed in the United States. There is no specific design code, and only a limited amount of research has been reported on the subject. This research investigates the behavior of guyed masts incorporating synthetic ropes as guys, with a particular focus on the effect of snap loads on the mast behavior. This is the third phase of a multi-stage project aimed at analyzing the potential for Snapping-Cable Energy Dissipators (SCEDs) to minimize lateral response in structures.

A finite element model of a 120-m-tall guyed mast was developed with the commercial program ABAQUS. The three-dimensional behavior of the mast was observed when subjected to two ground motion records: Northridge and El Centro. Three orthogonal earthquake components were input, two horizontal and one vertical. A series of parametric studies was conducted to determine the sensitivity of the response to guy pretension, which is a measure of the potential slackness in the guys during response. Additionally, the studies examined the effects of guy stiffness, mast properties, and directionality of input motion.

Deflections, bending moments, guy tensions, and base shears were examined. The results were used to characterize the trends in the structural response of guyed masts. The level of slackness in the guys changed the behavior, and the lessons learned will be used to continue research on the application of SCEDs in structures.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Thesis-GMH.pdf 686.62 Kb 00:03:10 00:01:38 00:01:25 00:00:42 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.