Title page for ETD etd-07062012-131158


Type of Document Master's Thesis
Author Kakumanu, Akshay
Author's Email Address kaksh89@vt.edu
URN etd-07062012-131158
Title Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissues as Revealed by Deep Sequencing
Degree Master of Science In the Life Sciences
Department Plant Pathology, Physiology, and Weed Science
Advisory Committee
Advisor Name Title
Grene, Ruth Committee Chair
Gillaspy, Glenda E. Committee Member
Heath, Lenwood S. Committee Member
Murali, T. M. Committee Member
Keywords
  • Drought
  • Illumina
  • RNA-Ser
  • Maize
  • Ovaries
  • Leaf Meristem
Date of Defense 2012-06-28
Availability unrestricted
Abstract
Drought is a major environmental stress factor that poses a serious threat to food security. The effects of drought on early reproductive tissue at 1-2 DAP (days after pollination) is irreversible in nature and leads to embryo abortion, directly affecting the grain yield production. We developed a working RNA-Seq pipeline to study maize (Zea mays) drought transcriptome sequenced by Illumina GSIIx technology to compare drought treated and well- watered fertilized ovary (1-2DAP) and basal leaf meristem tissue. The pipeline also identified novel splice junctions - splice variants of previously known gene models and potential novel transcription units. An attempt was also made to exploit the data to understand the drought mediated transcriptional events (e.g. alternative splicing). Gene Ontology (GO) enrichment analysis revealed massive down-regulation of cell division and cell cycle genes in the drought stressed ovary only. Among GO categories related to carbohydrate metabolism, changes in starch and sucrose metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in sucrose transporter function, with no comparable changes occurring in the leaf meristem. ABA-related processes responded positively, but only in the ovaries. GO enrichment analysis also suggested differential responses to drought between the two tissues in categories such as oxidative stress-related and cell cycle events. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion, and the relative robustness of actively dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. A hypothesis is formulated, proposing drought-mediated intersecting effects on the expression of invertase genes, glucose signaling (hexokinase 1-dependent and independent), ABA-dependent and independent signaling, antioxidant responses, PCD, phospholipase C effects, and cell cycle related processes.

This work was supported by the National Science Foundation Plant Genome Research Pro- gram (grant no. DBI0922747), iPlant Collaborative (NSF DBI-0735191) and also NSF ABI1062472.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Kakumanu_A_T_2012 1.62 Mb 00:07:31 00:03:52 00:03:23 00:01:41 00:00:08

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.