Title page for ETD etd-07082011-144652


Type of Document Dissertation
Author Sen, Susmita
URN etd-07082011-144652
Title Characterizing Impacts of and Recovery from Surface Coal Mining in Appalachian Forested Landscapes Using Landsat Imagery
Degree PhD
Department Geospatial and Environmental Analysis
Advisory Committee
Advisor Name Title
Wynne, Randolph H. Committee Co-Chair
Zipper, Carl E. Committee Co-Chair
Campbell, James B. Jr. Committee Member
Masek, Jeffrey G. Committee Member
Thomas, Valerie A. Committee Member
Keywords
  • Remote sensing
  • trajectory analysis
  • ecosystem restoration
  • woody canopy cover
  • ecosystem disturbance
Date of Defense 2011-06-23
Availability restricted
Abstract
This dissertation describes research investigating the potential for using Landsat data to identify and characterize woody canopy cover on reclaimed coal-mined lands through three separate studies. The objective of the first study was to assess whether surface coal mines in the forested central Appalachian regions of the US can be separated from the other prevalent forest-replacing disturbances through analysis of an interannual chronosequence of Landsat images. Disturbances were classified using descriptors of the disturbance/recovery trajectories: disturbance minimum, recovery slope and recovery maximum. Three vegetation indices (VIs) (normalized difference vegetation index, NDVI; tasseled cap greenness/brightness ratio, TC G/B; and inverse of Landsat band 3, B3I) were used to analyze multitemporal trajectories generated using both pixels and objects. Classification accuracies using objects were better than those obtained using pixels for all VIs. The highest object-based classification accuracy was achieved using TC G/B (89%), followed by NDVI (88%) and B3I (80%). The objective of the second study was to evaluate performance of a woody canopy cover (including both native and invasive species) estimation method based on the 2011 National Land Cover Database (NLCD) protocol for both mined and non-mined areas of the central Appalachians. Potential explanatory variables included raw and derived bands from leaf-on and leaf-off Landsat scenes plus terrain descriptors. Results show that the model developed to estimate canopy cover for mines (R2 = 0.78, Adj. R2 = 0.77, RMSE = 16%) is more robust than the models developed for non-mines, mixed, and all areas combined. The objective of the third study was to determine whether four disturbance/recovery parameters (recovery time, disturbance minimum, recovery slope, and recovery maximum), alone or in combination with variables identified in the second study, enable robust estimation of woody canopy cover on reclaimed surface coal mines. Of the disturbance/recovery parameters, only recovery time made a significant contribution to the model (R2 0.45, Adj. R2 0.44, RMSE 14%). Addition of leaf-on and leaf-off NDVI improved the R2 to 0.54 (Adj. R2 0.53, RMSE 13%). Analysis of Landsat data has strong potential for identifying reclaimed mines and characterizing the extent to which woody canopy has recovered post-reclamation.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Sen_S_D_2011.pdf 5.36 Mb 00:24:49 00:12:46 00:11:10 00:05:35 00:00:28
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.