Title page for ETD etd-07112003-184036


Type of Document Master's Thesis
Author Reed, Deborah G.
URN etd-07112003-184036
Title Characterizatin of the A/B regulon in tobacco (Nicotiana tabacum)
Degree Master of Science
Department Plant Pathology, Physiology, and Weed Science
Advisory Committee
Advisor Name Title
Jelesko, John G. Committee Chair
Cramer, Carole L. Committee Member
Nessler, Craig L. Committee Member
Keywords
  • Nicotiana tabacum
  • alkaloid biosynthesis
  • nicotine
  • fluorescent differential display (FDD)
  • quantitative real time polymerase chain reaction (
  • differential expression
Date of Defense 2003-06-06
Availability unrestricted
Abstract
CHARACTERIZATION OF THE A/B REGULON IN TOBACCO

(NICOTIANA TABACUM)

Deborah G. Reed

(ABSTRACT)

Plant alkaloids are secondary metabolites that may be synthesized in an inducible defense response to herbivory (Baldwin 1999). Genetic engineering of secondary metabolic pathways in plants to enhance or reduce metabolite production is limited by the current understanding of these pathways and their regulation in response to environmental conditions. This study was intended to provide new insights into the mechanism and regulation of alkaloid biosynthesis in N. tabacum by identifying genes that are coordinately regulated during conditions that induce alkaloid biosynthesis and by comparing their expression in regulatory mutant backgrounds that differ at two quantitative alkaloid loci, A and B. In order to identify novel genes that are differentially expressed during alkaloid biosynthesis, the transcriptional profiling procedure, fluorescent differential display (FDD), was used to screen total RNA isolated from Burley 21 (WT, AABB) and LA21 (low alkaloid regulatory mutant, aabb) tobacco root cultures that were induced for alkaloid synthesis. Four of thirteen cloned FDD fragments showed sequence homology to genes with defense-related functions. The differential expression of genes represented by selected FDD gene fragments was confirmed by comparing Northern blots of transcripts of those genes to known alkaloid biosynthetic genes, putrescine methyl transferase (PMT3), ornithine decarboxylase (ODC3), arginine decarboxylase (ADC1), and quinolinate phosphoribosyltransferase (QPRT). The role of the A and B loci in differential expression of genes represented by FDD clones and of known nicotine biosynthetic genes was examined using quantitative real time polymerase chain reaction (QRT-PCR) to measure transcript levels of these genes in four tobacco genotypes differing in alkaloid content, Burley 21(AABB), HI21 (AAbb), LI21(aaBB), and LA21 (aabb). Results of this study suggest that the A/B regulon is not limited to alkaloid biosynthetic genes, but includes multiple genes with defense-related functions. QRT-PCR analysis of nicotine biosynthetic genes and genes represented by confirmed differentially expressed FDD clones showed increased mRNA accumulation in response to alkaloid induction in all the tested genotypes, which suggests that the A and B mutations affect overall mRNA accumulation levels, rather than gene inducibility, per se.

Baldwin, I.T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. Journal of Chem. Ecol. 25: 3-30.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  contents.pdf 231.48 Kb 00:01:04 00:00:33 00:00:28 00:00:14 00:00:01
  thesis.pdf 2.99 Mb 00:13:51 00:07:07 00:06:14 00:03:07 00:00:15

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.