Title page for ETD etd-07242001-190849


Type of Document Master's Thesis
Author Xia, Jianjun
Author's Email Address jxia@vt.edu
URN etd-07242001-190849
Title Finite Element Analysis of Ship Collisions
Degree Master of Science
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Brown, Alan J. Committee Chair
Hughes, Owen F. Committee Member
Kapania, Rakesh K. Committee Member
Keywords
  • collision
  • ship
  • damage
Date of Defense 2001-02-09
Availability unrestricted
Abstract
FINITE ELEMENT ANALYSIS OF SHIP COLLISIONS

Jianjun Xia

ABSTRACT

The serious consequence of ship collisions necessitates the development of regulations and requirements for the subdivision and structural design of ships so that damage and environmental pollution is reduced, and safety is improved. A simplified collision model (SIMCOL) is currently being developed at Virginia Tech to conduct probabilistic analysis of damage in ship collisions and ultimately optimize ship structural designs to improve crashworthiness. Collision data for validation of SIMCOL is very difficult to obtain, and model testing is very costly. Finite Element Analysis (FEA) provides an alternative to physical validation that can be used to increase confidence and insight in simplified model results.

This thesis develops a complete methodology for ship-to-ship collision simulations using the explicit non-linear FE code LS-DYNA3D. Various modeling alternatives are considered. The ability to model a complete ship-to-ship collision is developed incrementally starting with bow collisions with a rigid wall. A super-element (intersection model) approach is considered to increase the calculation speed of bow models. A conventional fine mesh finite element bow model is also developed. Results from both models are compared with each other, and with a closed-form calculation from Pedersen. A fine mesh model is developed for a struck tanker cargo section and integrated in a total ship framework modeling external dynamics and ship-to-ship contact. A series of collision scenarios is simulated using the conventional bow model and a rigid bow model striking a double hull tanker. Results are compared with SIMCOL, DAMAGE, DTU and ALPS/SCOL models. LS-DYNA provides detailed and reasonable results for ship collision analysis and comparison to increase confidence in simplified models.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  JxiaThesis.pdf 13.05 Mb 01:00:24 00:31:03 00:27:10 00:13:35 00:01:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.