Title page for ETD etd-07282008-134249


Type of Document Dissertation
Author Kassegne, Samuel Kinde
URN etd-07282008-134249
Title Layerwise theory for discretely stiffened laminated cylindrical shells
Degree PhD
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Reddy, Junuthula N. Committee Chair
Hendricks, Scott L. Committee Member
Librescu, Liviu Committee Member
Plaut, Raymond H. Committee Member
Telionis, Demetri P. Committee Member
Keywords
  • Plates (Engineering)
Date of Defense 1992-12-15
Availability unrestricted
Abstract
The Layerwise Shell Theory is used to model discretely stiffened laminated composite cylindrical shells for stress, vibration, pre-buckling and post-buckling analysis. The layerwise theory reduces a three-dimensional problem to a two-dimensional problem by expanding the three-dimensional displacement field as a function of a surface-wise two-dimensional displacement field and a one-dimensional interpolation through the shell thickness. Any required degree of accuracy can be obtained by an appropriate, independent selection of the one-dimensional interpolation functions through the thickness and the two-dimensional interpolation of the variables on the surface. Using a layerwise format, discrete axial and circumferential stiffeners are modeled as two-dimensional beam elements. Similar displacement fields are prescribed for both the stiffener and shell elements. The contribution of the stiffeners to the membrane stretching, bending and twisting stiffnesses of the laminated shell is accounted for by forcing compatibility of strains and equilibrium of forces between the stiffeners and the shell skin. The layerwise theory is also used to model initial imperfections of the unstressed configuration. A finite element scheme of the layerwise model is developed and applied here to investigate the effect of imperfections on the response of laminated cylindrical shells.

Using a finite element model of the layerwise theory for shells and shell stiffener elements, the accuracy and reliability of the elements is investigated through a wide variety of examples. The examples include laminated stiffened and unstiffened plates and shells and stand-alone beams under different types of external destabilizing loads. Finally, the study identifies the particular types of problems where the layerwise elements possess a clear advantage and superiority over the conventional equivalent single-layer models.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  LD5655.V856_1992.K377.pdf 4.02 Mb 00:18:35 00:09:33 00:08:22 00:04:11 00:00:21
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.