Title page for ETD etd-08042006-150936


Type of Document Dissertation
Author Huminicki, Danielle Marie Cecelia
Author's Email Address dhuminic@vt.edu
URN etd-08042006-150936
Title Effect of Coatings on Mineral Reaction Rates in Acid Mine Drainage
Degree PhD
Department Geosciences
Advisory Committee
Advisor Name Title
Rimstidt, james Donald Committee Chair
Chermak, John A. Committee Member
Dove, Patricia M. Committee Member
Schreiber, Madeline E. Committee Member
Keywords
  • alkalinity
  • pyrite oxidation rates
  • iron oxyhydroxide coatings
  • calcite dissolution rates
  • acid mine drainage
  • hydrodynamics
  • limonite pseudomorphs
  • gypsum coatings
  • anoxic limestone drain
Date of Defense 2006-07-24
Availability unrestricted
Abstract

This dissertation includes theoretical and applied components that address the effect of coatings on rates of mineral reactions that occur in acid mine drainage (AMD) environments. The two major projects investigated how diffusion-limited transport of reactants through pore spaces in coatings on mineral grains affects the reaction rate of the underlying mineral. The first project considered the growth of gypsum coatings on the surface of dissolving limestone in anoxic limestone drains (ALD), which reduces the neutralization rate of the dissolving limestone and the subsequent effectiveness of this treatment. The second project investigated the conditions where iron oxyhydroxide coatings form on oxidizing pyrite and the potential strategies to prevent "runaway" AMD by reducing the rate of acid production to the point that the acid can be neutralized by the surrounding rocks.

In both studies, experiments were conducted to measure reaction rates for the underlying minerals, as coatings grew thicker. These experimental data were fit to a diffusion model to estimate diffusion coefficients of reactants through pore spaces in coatings. These models are extrapolated to longer times to predict the behavior of the coated grains under field conditions.

The experimental results indicate that management practices can be improved for ALDs and mine waste piles. For example, supersaturation with respect to gypsum, leading to coating formation, can be avoided by diluting the ALD feed solution or by replacing limestone with dolomite. AMD can be prevented if the rate of alkalinity addition to mine waste piles is faster than acid is produced by pyrite oxidation. The diffusion model developed in this study predicts when iron oxyhydroxide coatings will become thick enough that alkalinity from the surroundings is sufficient to neutralize acid produced by coated pyrite oxidation and additional alkalinity is no longer required.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  HuminickiDISSERTATION.pdf 1.10 Mb 00:05:04 00:02:36 00:02:16 00:01:08 00:00:05

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.