Title page for ETD etd-080699-134726

Type of Document Master's Thesis
Author Magill, Samantha Anne
Author's Email Address smagill@vt.edu
URN etd-080699-134726
Title Study of A Direct Measuring Skin Friction Gage with Rubber Compounds for Damping
Degree Master of Science
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Schetz, Joseph A. Committee Chair
Grossman, Bernard M. Committee Member
Kapania, Rakesh K. Committee Member
  • Rubber
  • Skin Friction
  • Damping
Date of Defense 1999-07-29
Availability unrestricted
STUDY OF A DIRECT MEASURING SKIN FRICTION GAGE WITH RUBBER COMPOUNDS FOR DAMPING Samantha A. Magill (ABSTRACT) A study was conducted on the measurement of skin friction, the least under-stood component of drag. Skin friction is considered the "last frontier" in drag reduc-tion for supersonic flight, but to understand skin friction, it must be accurately meas-ured. This study utilized the direct measuring technique for skin friction. A small de-vice, termed a skin friction gage, measures the stress on a cantilever beam topped with a movable surface piece as a shear flow passes over the flush surface. The improve-ment of these devices for various flow fields is ongoing. A problem that arose with many designs was leakage of a gap-filling liquid. The typical direct measuring skin friction gage uses oil in a gap between the cantilever beam and the encasement to dampen vibrations, to create an even flow over the surface, and for temperature com-pensation. In high speed testing the oil leaks out; therefore, a gage with rubber to fill the gap instead of oil was introduced.

This study employed a finite element method model to fully understand the strains involved with the rubber and the skin friction gage. The development of a cali-bration device, called the Calibration Rig, for the rubber skin friction gages was con-structed. The Calibration Rig was successful, but deemed to be more cumbersome than initially expected. This led to the development of a thin rubber sheet to cover the face of the gage instead of rubber filling the entire gap. More finite element method modeling was done to finalize the design of a gage with a rubber sheet. The design consisted of a plastic skin friction gage with an approximately 0.015 in. thick rubber sheet, a 0.0625 in. wide gap between the floating head on the cantilever beam and the encasement to be filled with oil, and semi-conductor strain gages to measure the beam deflection.

Vibration tests were performed to determine if the rubber sheet produced the required damping. These tests were successful, and so much so, that the oil for damping was not necessary. However, supersonic wind tunnel tests at Mach 2.4 which were done at Virginia Polytechnic Institute and State University, initially yielded unfavorable results. The rubber sheet failed during the violent process of starting and unstarting of the tunnel. More study on the adhesive mounting of the rub-ber sheet to the skin friction gage face is needed.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis2.pdf 745.43 Kb 00:03:27 00:01:46 00:01:33 00:00:46 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.