Title page for ETD etd-08072008-105548


Type of Document Dissertation
Author Naha, Sayangdev
Author's Email Address sayan@vt.edu
URN etd-08072008-105548
Title Growth Model, Synthesis of Carbon nanostructures and Alteration of Surface properties Using Them
Degree PhD
Department Engineering Science and Mechanics
Advisory Committee
Advisor Name Title
Puri, Ishwar K. Committee Chair
Cramer, Mark S. Committee Member
Hajj, Muhammad R. Committee Member
Lesko, John J. Committee Member
Mahajan, Roop L. Committee Member
Patil, Mayuresh J. Committee Member
Keywords
  • carbon nanofibers
  • catalysis
  • nanotechnology
  • flame synthesis
  • silicon nanowires
  • superhydrophobicity
  • Carbon nanotubes
Date of Defense 2008-07-25
Availability unrestricted
Abstract
Flame synthesis is recognized as a much cheaper and higher throughput process for carbon nanotube/nanofiber (CNT/CNF) production compared to conventional catalytic processes like chemical vapor deposition (CVD). Nanostructured carbon materials, such as carbon nanotubes and nanofibers, exhibit superhydrophobic behavior over a range of pH values, including for corrosive liquids. Part of this research reports the development of a rapid on-demand process for the synthesis of superhydrophobic surfaces on silicon (Si) discs using an ethylene-air nonpremixed flame. Such superhydrophobic behavior, combined with increase in effective surface area due to carbon nanostructure (CNS) deposition and corresponding desirable size (nanoscale roughness) attract the growth and attachment of microbial colonies to these CNS-enhanced substrates. This has potentially high-impact application in microbial fuel cells (MiFCs) whereby stainless steel (SS) meshes coated with flame-deposited CNS are used as anodes and the electrons produced by attaching biofilms can generate electricity in a fuel cell. However, despite such and many other applications and promise of carbon nanotubes (CNTs), their production is generally based on empirical principles. There are only a few CNT formation models that predict the dependence of CNT growth on various synthesis parameters. Typically, these do not incorporate a detailed mechanistic consideration of the various processes that are involved during CNT synthesis. Herein, this need is addressed and a model is presented for catalytic CNT growth that integrates various interdependent physical and chemical mechanisms involved in CNT production. It is validated by comparing its predictions with experimental measurements for CVD synthesis of CNTs and a concise parametric study is presented. The results are extrapolated for flame synthesis that is recognized as a desirable cost-effective process for the bulk synthesis of CNTs, as already mentioned. The last part of this dissertation discusses an extension of the CNT growth model to silicon nanowire/nanowhisker (SiNW) synthesis. SiNWs are synthesized by a number of methods – catalysis by a metal (involving vapor-liquid-solid or VLS growth mode), molecular beam epitaxy, thermal evaporation and laser ablation to name a few. Our model pertains to metal-catalyzed VLS growth mode.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Thesis_Naha_ETD.pdf 7.88 Mb 00:36:28 00:18:45 00:16:24 00:08:12 00:00:42

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.