Title page for ETD etd-080999-085839


Type of Document Master's Thesis
Author Moye, Charles David
Author's Email Address cdmoye@earthlink.net
URN etd-080999-085839
Title The Design and Implementation of a Spatial Partitioner for use in a Runtime Reconfigurable System
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Athanas, Peter M. Committee Chair
Jones, Mark T. Committee Member
Nunnally, Charles E. Committee Member
Keywords
  • Configurable Computing
  • CCM
  • Spatial Partitioner
  • RTR
Date of Defense 1999-06-11
Availability unrestricted
Abstract

Microprocessors have difficulties addressing the demands of today's high-performance embedded applications. ASICs are a good solution to the speed concerns, but their cost and time to market can make them impractical for some needs. Configurable Computing Machines (CCMs) provide a cost-effective way of creating custom components; however, oftentimes it would be better if there were a way to change the configuration of the CCM as a program is executing. An efficient way of doing this is with Runtime Reconfigurable (RTR) computing architectures.

In an RTR system, one challenging problem is the assignment of operators onto the array of processing elements (PEs) in a way as to simultaneously minimize both the number of PEs used and the number of interconnections between them for each configuration. This job is automated through the use of a software program referred to as the Spatial Partitioner.

The design and implementation of the Spatial Partitioner is the subject of this work. The Spatial Partitioner developed herein uses an iterative, recursive algorithm along with cluster refinement to find a reasonably efficient allocation of operators onto the target platform in a reasonable amount of time. Information about the topology of the target platform is used throughout the execution of the algorithm to ensure that the resulting solution is legal in terms of layout.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  etd.pdf 242.42 Kb 00:01:07 00:00:34 00:00:30 00:00:15 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.