Title page for ETD etd-08222001-165330


Type of Document Master's Thesis
Author Lagimoniere, Jr., Ernest Eugene
Author's Email Address elagimon@vt.edu
URN etd-08222001-165330
Title The Design and Construction of a High Bandwidth Proportional Fuel Injection System for Liquid Fuel Active Combustion Control
Degree Master of Engineering
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Saunders, William R. Committee Chair
Leo, Donald J. Committee Member
Vandsburger, Uri Committee Member
Keywords
  • Thermo-acoustic Instabilities
  • Proportional Fuel Injection
  • Piezo-ceramic actuator
  • Fuel Modulation
  • Active Combustion Control
Date of Defense 2001-08-21
Availability unrestricted
Abstract
This last decade experienced a sudden increase of interest in the control of thermo-acoustic instabilities, in particular through the use of fuel modulation techniques. The primary goal of this research was to design, construct and characterize a high bandwidth proportional fuel injection system, which could be used to study the effect of specific levels of fuel modulation on the combustion process and the reduction of thermo-acoustic instabilities. A fuel injection system, incorporating the use of a closed loop piston and check valve, was designed to modulate the primary fuel supply of an atmospheric liquid-fueled swirl stabilized combustor operating at a mean volumetric fuel flow rate of 0.4 GPH. The ability of the fuel injection system to modulate the fuel was examined by measuring the fuel line pressure and the flow rate produced during operation. The authority of this modulation over the combustion process was investigated by examining the effect of fuel modulation on the combustor pressure and the heat release of the flame. Sinusoidal operation of the fuel injection system demonstrated: a bandwidth greater that 800 Hz, significant open loop authority (averaging 12 dB) with regards to the combustor pressure, significant open loop authority (averaging 33 dB) with regards to the unsteady heat release rate and an approximate 8 dB reduction of the combustor pressure oscillation present at 100 Hz, using a phase shift controller. It is possible to scale the closed loop piston and check valve configuration used to create the fuel injection system discussed in this work to realistic combustor operating conditions for further active combustion control studies.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lagimoniere_ETD.pdf 6.86 Mb 00:31:46 00:16:20 00:14:17 00:07:08 00:00:36

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.