Title page for ETD etd-09072004-120912


Type of Document Master's Thesis
Author Myers, David S
Author's Email Address damyers2@vt.edu
URN etd-09072004-120912
Title An Extensible Component-Based Architecture for Web-Based Simulation Using Standards-Based Web Browsers
Degree Master of Science
Department Computer Science
Advisory Committee
Advisor Name Title
Balci, Osman Committee Chair
McCrickard, Donald Scott Committee Member
Nance, Richard E. Committee Member
Keywords
  • visual simulation
  • web-based simulation
  • asynchronous communication protocol
  • component-based simulation
  • web standards
  • extensible markup language
  • client/server simulation system
  • Animation
Date of Defense 2004-06-14
Availability unrestricted
Abstract
Web-based simulation (WBS) systems offer tradeoffs between user interactivity and hardware requirements striking to seek a balance between the differing concerns. Server-based systems offer little interactivity or concurrent visualization capabilities, while client-based systems have increased hardware requirements asking the user to provide high-end workstations. Concurrent visualization of simulation output proves execution intensive, or unusable in some situations. Creating an execution efficient and user friendly WBS system greatly improves user experience while gaining all of the benefits inherent in a web-based system such as high accessibility and ease of maintenance. In order to provide a usable concurrent visualization WBS this thesis developed the Web-Based Queuing System Simulation System (WebQS3). WebQS3 splits the responsibilities of simulation execution and simulation visualization into a client-server environment; the client is responsible for the visualization display and server is responsible for simulation execution. The system differs from many previous WBS systems in that the client-side application is developed using web-standard technologies such as HTTP, XML, SVG, and ECMAScript instead relying on Java Applets and associated technologies. Using web-standards as the foundation of the client agent opens the visualization and model construction functionality to any user that accesses the application using a web browser while also making the application more scalable in terms of user load. Implementing the client with web-standards also included the development of an asynchronous client-server communication protocol as opposed to traditional synchronous communication protocols used by Java WBS systems. The asynchronous protocol demonstrates similar or better execution performance than similar synchronous communication protocols in most quality characteristics. By creating a WBS system using web-standards implemented in most modern web browsers any user may visit the WebQS3 site and have simulation tools available for use. Providing simulation services on the web makes eases the creation of simulation models my making the tools to readily available while facilitating information sharing and collaboration over the web. The WebQS3 system serves as a model to drive research in WBS systems away from proprietary Java technologies to web standards for front-end visualization technologies.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  WebQS3_Thesis-final2.pdf 1.91 Mb 00:08:49 00:04:32 00:03:58 00:01:59 00:00:10

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.