Title page for ETD etd-09082006-115915


Type of Document Master's Thesis
Author Boyd, Steven J
URN etd-09082006-115915
Title Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Nelson, Douglas J. Committee Chair
Ellis, Michael W. Committee Member
Reinholtz, Charles F. Committee Member
Keywords
  • hybrid electric vehicle
  • efficiency
  • split parallel architecture
  • E85
  • control strategy
Date of Defense 2006-08-28
Availability unrestricted
Abstract
Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal strategy; that is, an understanding as to why the vehicle should operate in a certain way under the given conditions. The literature review gives a background of hybrid vehicle control publications, and without the SPA HEV addressed or a hybrid analysis based on loss calculations between engine only and hybrid modes, there is a need for this paper. Once the REVLSE architecture and components are understood, the hybrid modes are explained. Then the losses for each hybrid mode are calculated, and both the conversion and assist efficiencies are detailed. The conversion efficiency represents the amount of additional fuel required to store a certain amount of energy in the battery, and this marginal efficiency can be higher than peak engine efficiency itself. This allows electric only propulsion to be evaluated against the engine only mode, and at low torques the electric motor is more efficient despite the roundtrip losses of the hybrid system.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  SB_thesis_102006.pdf 701.59 Kb 00:03:14 00:01:40 00:01:27 00:00:43 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.