Title page for ETD etd-09082012-040102


Type of Document Master's Thesis
Author Farmer, William S.
URN etd-09082012-040102
Title A microcosm study of the biodegradability of adsorbed toluene by acclimated bacteria in soils
Degree Master of Science
Department Environmental Engineering
Advisory Committee
Advisor Name Title
Novak, John T. Committee Chair
Benoit, Robert E. Committee Member
Hoehn, Robert C. Committee Member
Keywords
  • Toluene
Date of Defense 1989-02-05
Availability restricted
Abstract

Groundwater contamination by man-made chemicals is increasingly being reported in the United States. The potential for detrimental health effects is substantial and has been addressed by the environmental engineering profession. Typically, contaminated groundwater is pumped to the surface and treated in a variety of methods including air stripping, carbon adsorption, and biodegradation. In situ biodegradation is increasingly being considered as an alternative to pump-and-treat technology.

The primary goal of this research was to determine the fate of an organic chemical adsorbed to a subsurface soil when exposed to acclimated bacteria. Toluene was chosen as a representative compound because it is a major constituent of groundwater contaminated by gasoline. In addition, toluene is known to be both biodegradable and adsorbable. Sybron Biochemical, Inc. supplied the aerobic bacteria Psgudomonas gutjga known to readily transform toluene.

Soil microcosms were established in test—tubes and conditions simulated those of a saturated, aerobic aquifer. Gas chromatography was used to quantify changes in toluene concentration due to adsorption and biodegradation. The addition of an aqueous toluene solution to sterile microcosms resulted in the rapid and extensive adsorption of toluene to the soil. Subsequent analysis revealed the slow adsorption of an additional small fraction of toluene.

Biodegradation studies entailed the addition of acclimated bacteria to sterile soil microcosms in which substantial toluene adsorption had occurred. Addition of small doses of hydrogen peroxide effectively maintained aerobic conditions for biodegradation. As a result, E, putjda was able to transform all measurable toluene in the microcosms.

Additional desorption studies revealed that a "resistant" component of toluene remained adsorbed to the soil during biodegradation. This component was neither acted upon by bacteria nor readily extractable by methylene chloride. However, slow desorption of toluene was shown to occur at a rate comparable to slow adsorption. To achieve complete removal, groundwater treatment methods must address the rate-controlled desorption of the resistant toluene component.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1989.F375.pdf 3.44 Mb 00:15:55 00:08:11 00:07:09 00:03:34 00:00:18
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.