Title page for ETD etd-09112000-10210048


Type of Document Master's Thesis
Author Dobarco-Otero, Jose
URN etd-09112000-10210048
Title Second-Surface Mirror Effects in Thin-Film Absorber Layers
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Mahan, James Robert Committee Co-Chair
Scott, Elaine P. Committee Member
Vick, Brian L. Committee Member
Keywords
  • second-surface mirror
  • thin-films
  • electromagnetic theory
Date of Defense 2000-09-05
Availability unrestricted
Abstract
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been developing analytical and numerical heat transfer models for NASA's Langley Research Center for more than 25 years. Recent versions of these models are being used in the design of the next-generation thermal radiation detectors intended for Earth radiation budget campaigns. The current investigation presents three models for the absorption of electromagnetic radiation in thin films. The first assumes a surface heating boundary condition. The second model, derived from electromagnetic theory, is an analytical volumetric heat generation model. This model can be applied to a semi-infinite medium or to a thin-film absorber layers behaving as a second-surface mirror; that is, a semi-transparent coating deposited on top of a reflective surface. The third model is a statistical volumetric heat generation model that is derived using the Monte Carlo ray-trace (MCRT) method. These models are compared by using them to predict the transient temperature response of a generic thermal radiation detector. Results are presented for absorber layers in which the index of refraction is equal to the extinction coefficient. It was found that both of the volumetric heat generation models produce identical results. It was also found that the response of the detector due to shorter wavelengths deviates less from the surface absorption model than at longer wavelengths. A second-surface mirror reflection model for the absorber layer of the thermal radiation detector is also presented in this thesis.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  dobarco.pdf 452.77 Kb 00:02:05 00:01:04 00:00:56 00:00:28 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.