Title page for ETD etd-09202005-091006


Type of Document Dissertation
Author Frink, Neal T.
URN etd-09202005-091006
Title Three-dimensional upward scheme for solving the Euler equations on unstructured tetrahedral grids
Degree PhD
Department Aerospace Engineering
Advisory Committee
Advisor Name Title
Walters, Robert W. Committee Chair
Grossman, Bernard M. Committee Member
Kapania, Robert K. Committee Member
Luckring, James M. Committee Member
Schetz, Joseph A. Committee Member
Keywords
  • Lagrange equations
Date of Defense 1991-09-15
Availability restricted
Abstract

A new upwind scheme is developed for solving the three-dimensional Euler equations on unstructured tetrahedral meshes. The method yields solution accuracy and efficiency comparable to that currently available from similar structured-grid codes. The key to achieving this result is a novel cell reconstruction process which is based on an analytical formulation for computing solution gradients within tetrahedral cells. Prior methodology requires the application of cumbersome numerical procedures to evaluate surface integrals around the cell volume. The result is that higher-order differences can now be constructed more efficiently to attain computational times per cell comparable to those of structured codes.

The underlying philosophy employed in constructing the basic flow solver is to draw on proven structured-grid technology whenever possible in order to reduce risk. Thus, spatial discretization is accomplished by a cell-centered finite-volume formulation using flux-difference splitting. Solutions are advanced in time by a 3- stage Runge-Kutta time-stepping scheme with convergence accelerated to steady state by local time stepping and implicit residual smoothing. The flow solver operates at a speed of 34 microseconds per cell per cycle on a CRAY-2S supercomputer and requires 64 words of memory per cell.

Transonic solutions are presented for a broad class of configurations to demonstrate the accuracy, speed, and robustness of the new scheme. Solutions are shown for the ONERA M6 wing, the Boeing 747-200 configuration, a low-wing transport configuration, a high-speed civil transport configuration, and the space shuttle ascent configuration. Computed surface pressure-coefficient distributions on the ONERA M6 wing are compared with structured-grid results as well as experimental data to quantify the accuracy. A further assessment of grid sensitivity and the effect of convergence acceleration parameters is also included for this configuration.

The more complex configurations serve to demonstrate the robustness and efficiency of the new method and its potential for performing routine aerodynamic analysis of full aircraft configurations. For example, the basic transonic flow features are well captured on the space shuttle ascent configuration with only 7 megawords of memory and 142 minutes of CRAY-YMP run time.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[BTD] LD5655.V856_1991.F756.pdf 3.40 Mb 00:15:44 00:08:05 00:07:05 00:03:32 00:00:18
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.