Title page for ETD etd-09212008-013322


Type of Document Master's Thesis
Author Cavey, Ryan Hale
URN etd-09212008-013322
Title Design and Development of a Squeeze-Mode Rheometer for Evaluating Magneto-Rheological Fluids
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Ahmadian, Mehdi Committee Chair
Sandu, Corina Committee Member
West, Robert L. Jr. Committee Member
Keywords
  • squeeze flow
  • MR fluid
  • magneto-rheological
  • squeeze-mode
  • rheometer
  • MR rheometer
Date of Defense 2008-09-09
Availability unrestricted
Abstract
This study aims to better understand the behavior of magnetorheological (MR) fluids operated in the non-conventional squeeze mode through the use of a custom designed rheometer. Squeeze mode is the least understood of the three operational modes of MR fluid and thus its potential has yet to be realized in practical applications. By identifying the behavior of MR fluid in this mode, the foundation for future development of MR technology will be laid.

Using the limited amount of literature available on squeeze-mode operation in conjunction with conventional principles associated with MR technology, a custom rheometer was designed and fabricated. A detailed account of the design considerations and background information on the fundamentals incorporated into the design are provided. The squeeze-mode rheometer was used to evaluate a variety of MR fluids to observe trends that may exist across fluids. Specifically, fluids of different ferrous particle volume fractions were considered.

Through testing, common trends in fluid stiffness were observed for multiple fluids tested with the squeeze-mode rheometer. When operated in squeeze mode, activated MR fluid has shown to provide substantial resistance to compressive loading, possibly making it attractive for low-displacement high-load systems. The primary observation from the tests is that the activated fluid’s stiffness progressively increases over the duration of fluid operation. This phenomenon is due to severe carrier-fluid separation coupled with the formation of ferrous particle aggregate clumps in the fluid. This effect is further explored in this research.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Ryan_Cavey_Masters_Thesis.pdf 7.50 Mb 00:34:42 00:17:51 00:15:37 00:07:48 00:00:39

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.