Title page for ETD etd-09282001-114823


Type of Document Dissertation
Author Tinetti, Ana Fiorella
URN etd-09282001-114823
Title On the Use of Surface Porosity to Reduce Wake-Stator Interaction Noise
Degree PhD
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Kelly, Jeffrey J. Committee Chair
Bauer, Steven X. S. Committee Member
Fuller, Christopher R. Committee Member
Ng, Fai Committee Member
Thomas, Russell H. Committee Member
Wood, Houston Committee Member
Keywords
  • turbofan noise reduction
  • rotor-stator interaction noise
  • passive porosity
  • surface porosity
Date of Defense 2001-09-17
Availability unrestricted
Abstract
An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of Passive Porosity Technology as a mechanism for alleviating interaction effects and radiated noise by reducing the fluctuating forces acting on the vane surfaces. The study involved a typical high bypass fan stator airfoil immersed in a subsonic free field and exposed to the effects of a transversely moving wake. Time histories of the primitive aerodynamic variables obtained from Computational Fluid Dynamics (CFD) calculations were input into an acoustic prediction code to estimate noise levels at a radial distance of ten chords from the stator airfoil. This procedure was performed on the solid airfoil to obtain a baseline, and on approximately fifty porous configurations in order to isolate those that would yield maximum noise reductions without compromising the aerodynamic performance of the stator.

It was found that, for a single stator immersed in a subsonic flow field, communication between regions of high pressure differential - made possible by the use of passive porosity - tends to induce a time-dependent oscillatory pattern of small inflow-outflow regions near the stator leading edge (LE), which is well established before wake effects come into play. The oscillatory pattern starts at the LE, and travels downstream on both suction and pressure sides of the airfoil. The amplitude of the oscillations seemed to be proportional to the extension of the porous patch on the pressure side. Regardless of this effect, which may not have occurred if the airfoil were placed within a stator cascade, communication between regions of high pressure differential is necessary to significantly alter the noise radiation pattern of the stator airfoil. Whether those changes result in noise abatement or enhancement depends primarily on the placement and extension of the porous patches. For most viable configurations, porosity reduced loading noise but increased thickness noise. Variations in nominal porosity were of secondary importance.

In general, the best aerodynamic performers (i.e., those configurations that were able to reduce unsteady lift without severely altering the lift and/or drag characteristics of the solid airfoil) were also the best acoustic performers. As a result of using passive surface porosity, overall peak radiated noise was reduced by approximately 1.0 dB. This reduction increased to about 2.5 dB when the effects of loading noise alone were considered.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  dissertation.pdf 8.95 Mb 00:41:26 00:21:18 00:18:39 00:09:19 00:00:47

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.