Title page for ETD etd-09282003-131505

Type of Document Dissertation
Author Heracleous, Maria S.
Author's Email Address mheracle@vt.edu
URN etd-09282003-131505
Title Volatility Modeling Using the Student's t Distribution
Degree PhD
Department Economics
Advisory Committee
Advisor Name Title
Spanos, Aris Committee Chair
Ashley, Richard A. Committee Member
Kumar, Raman Committee Member
McGuirk, Anya M. Committee Member
Yang, Dennis T. Committee Member
  • Multivariate GARCH
  • Student's t distribution
  • Exchange Rates
  • VAR
Date of Defense 2003-08-29
Availability unrestricted
Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of univariate and multivariate GARCH type models. While the univariate models have been relatively successful in empirical studies, they suffer from a number ofweaknesses, such as unverifiable parameter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization.

This dissertation uses the Student's t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations.

Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatility literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student's t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data. Econometric modeling based on the Student's t distribution introduces an additional variable - the degree of freedom parameter. In Chapter 4 we focus on two questions relating to the `degree of freedom' parameter. A simulation study is used to examine:(i) the ability of the kurtosis coefficient to accurately capture the implied degrees of freedom, and (ii) the ability of Student's t GARCH model to estimate the true degree of freedom parameter accurately. Simulation results reveal that the kurtosis coefficient and the Student's t GARCH model (Bollerslev, 1987) provide biased and inconsistent estimators of the degree of freedom parameter.

Chapter 5 develops the Students' t Dynamic Linear Regression (DLR) }model which allows us to explain univariate volatility in terms of: (i) volatility in the past history of the series itself and (ii) volatility in other relevant exogenous variables. Empirical results of this chapter suggest that the Student's t DLR model provides a promising way to model volatility. The main advantage of this model is that it is defined in terms of observable random variables and their lags, and not the errors as is the case with the GARCH models. This makes the inclusion of relevant exogenous variables a natural part of the model set up.

In Chapter 6 we propose the Student's t VAR model which deals effectively with several key issues raised in the multivariate volatility literature. In particular, it ensures positive definiteness of the variance-covariance matrix without requiring any unrealistic coefficient restrictions and provides a parsimonious description of the conditional variance-covariance matrix by jointly modeling the conditional mean and variance functions.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  etd.pdf 1.46 Mb 00:06:46 00:03:28 00:03:02 00:01:31 00:00:07

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.