Title page for ETD etd-09292009-191237


Type of Document Dissertation
Author Sudarsan, Rajesh
Author's Email Address sudarsar@vt.edu
URN etd-09292009-191237
Title ReSHAPE: A Framework for Dynamic Resizing of Parallel Applications
Degree PhD
Department Computer Science
Advisory Committee
Advisor Name Title
Ribbens, Calvin J. Committee Chair
Cameron, Kirk W. Committee Member
de Sturler, Eric Committee Member
Sandu, Adrian Committee Member
Varadarajan, Srinidhi Committee Member
Keywords
  • Resizing LAMMPS
  • ReSHAPE
  • priority scheduling
  • adaptive resizing
  • data redistribution
Date of Defense 2009-09-25
Availability unrestricted
Abstract
As terascale supercomputers become more common, and as the high-performance computing community turns its attention to petascale machines, the challenge of providing effective resource management for high-end machines grows in both importance and difficulty. These computing resources are by definition expensive, so the cost of underutilization is also high, e.g., wasting 5% of the compute nodes on a 10,000 node cluster is a much more serious problem than on a 100 node cluster. Moreover, the high energy and cooling costs incurred in maintaining these high end machines (often millions of dollars per year) can be justified only when these machines are used to their full capacity. On large clusters, conventional jobs schedulers are hard-pressed to achieve over 90% utilization with typical job-mixes. A fundamental problem is that most conventional parallel job schedulers only support static scheduling, so that the number of processors allocated to an application cannot be changed at runtime. As a result, it is common to see jobs stuck in the queue because they require just a few more processors than are currently available, resulting in long queue wait times for applications and low overall system utilization.

A more flexible and effective approach is to support dynamic resource management and scheduling, where the number of processors allocated to jobs can be expanded or contracted at runtime. This is the focus of this dissertation --- dynamic resizing of parallel applications. Dynamic resizing significantly improves individual application turn-around time and helps the scheduler to achieve higher machine utilization and job throughput. This dissertation focuses on the potential benefits and challenges of dynamic resizing using ReSHAPE, a new framework for dynamic Resizing and Scheduling of Homogeneous Applications in a Parallel Environment. It also details several interesting and effective scheduling policies implemented in ReSHAPE and demonstrates their effectiveness to improve overall cluster utilization and individual application turn-around time.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Sudarsan_R_D_2009.pdf 3.10 Mb 00:14:21 00:07:22 00:06:27 00:03:13 00:00:16

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.