Title page for ETD etd-10022008-063211


Type of Document Master's Thesis
Author Lubkowitz, Erika M.
URN etd-10022008-063211
Title Biological treatment schemes for preventing oxime inhibition of nitrification
Degree Master of Science
Department Environmental Engineering
Advisory Committee
Advisor Name Title
Love, Nancy G. Committee Chair
Dietrich, Andrea M. Committee Member
Randall, Clifford W. Committee Member
Keywords
  • nitrification inhibition
  • nitrification
  • denitrification
  • oximes
Date of Defense 1996-05-05
Availability restricted
Abstract

The purpose of this research was to develop a single sludge multi-environment anoxic/aerobic biological treatment scheme that could achieve oxime degradation and nitrification in the same treatment process. Aerobic and anoxic batch experiments were initially performed to determine degrees of nitrification inhibition caused by three oximes, acetaldehyde oxime (AAO), aldicarb oxime (ADO), and methyl ethyl ketoxime (MEKO), and to investigate the fate of these oximes under anoxic, denitrifying conditions. Results from aerobic batch studies showed that MEKO was the only oxime which caused significant nitrification inhibition at concentrations expected in the industrial client's waste streams. Nitrification rates were reduced by 31% at MEKO concentrations as low as 2 mg/L and were almost completely inhibited above 9 mg/L. Results from anoxic batch studies demonstrated that MEKO was biologically degraded under nitrate limiting conditions, although the microorganism( s) responsible were not explicitly identified. Similar degradation trends were seen for AAO, but at significantly lower rates. ADO, however, appeared to be stable under all anoxic conditions examined. Results from batch studies were utilized to determine operational conditions for a single sludge multi-environment anoxic/anaerobic/aerobic sequencing batch reactor supplied with a synthetic organic wastewater containing up to 40 mgIL MEKO and 56 mgIL AAO. The system was able to achieve complete oxime degradation and nitrification when operated on a one day cycle with a twelve hour anoxic/anaerobic reaction phase and a nitrate:carbon ratio below 0.15 mg N03-N/mg TOC.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1996.L835.pdf 5.40 Mb 00:24:59 00:12:51 00:11:14 00:05:37 00:00:28
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.