Title page for ETD etd-10132010-020112


Type of Document Master's Thesis
Author Hunter, Kim R.
URN etd-10132010-020112
Title Macroscopic convection in the thin-film processor
Degree Master of Science
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Rony, Peter R. Committee Chair
Konrad, Kenneth Committee Member
McGee, Henry A. Jr. Committee Member
Keywords
  • Heat-transfer media
Date of Defense 1988-11-14
Availability restricted
Abstract
The thesis explores the proposal that macroscopic fluid convection in thin-film processors may be adequately represented by simple linear deterministic models. In addition, it examines the suggestion that the models themselves provide a useful tool in the search for a generalizable 'intrinsic' process heat transfer film coefficient, i.e., one that includes the effects of axial dispersion of the process fluid. Such a parameter would be helpful in the design and scale up of thin-film equipment.

The following approach was used to investigate this proposal: first, experimental fluid residence time distributions were obtained t over a range of operating conditions, using an industrial pilot plant thin -film processor. The experimental data were used to select an appropriate linear fluid flow model for the process. The model parameters were evaluated over this range using frequency response techniques. These models were subsequently incorporated into a numerical heat transfer simulation of the thin -film processor. Careful matching of the pilot plant transient temperature responses to those predicted by the simulation yielded the sought after intrinsic (dispersion corrected) heat transfer film coefficients for the processor.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1988.H965.pdf 6.94 Mb 00:32:07 00:16:31 00:14:27 00:07:13 00:00:37
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.