Title page for ETD etd-10152004-064343


Type of Document Dissertation
Author Kilian, Lars
Author's Email Address lkilian@vt.edu
URN etd-10152004-064343
Title Synthesis and Characterization of Responsive Poly(Alkyl Methacrylate) Topologies
Degree PhD
Department Chemistry
Advisory Committee
Advisor Name Title
Long, Timothy E. Committee Chair
Esker, Alan R. Committee Member
McGrath, James E. Committee Member
Morris, John R. Committee Member
Riffle, Judy S. Committee Member
Keywords
  • Thermal Degradation
  • Hydrolysis
  • Free Radical Polymerization
  • Anionic Polymerization
  • Adhesives
  • Macromonomer
  • Branched Polymers
Date of Defense 2004-07-21
Availability unrestricted
Abstract
Dimethacrylate monomers containing two cleavable tert-butyl ester groups were synthesized and utilized in the synthesis of star-shaped polymers. Star polymer coupling was achieved by reacting the living poly(alkyl methacrylate) using 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) or dicumyl dimethacrylate (DCDMA). These starshaped polymers were cleaved under hydrolytic conditions, leading to significant reductions in molecular weights. The cleavable star-shaped polymers also underwent uncatalyzed degradation at elevated temperatures. Pressure-sensitive adhesive (PSA) copolymers based on 2-ethylhexyl acrylate (EHA) were synthesized containing cleavable branching comprised of either DHDMA or DCDMA. Extremely high molecular weight branched polymers were obtained, and these branched adhesives exhibited 180° peel strengths that displayed a strong dependence on the weight-average molecular weights. The PSA branching sites were cleaved via acid-catalyzed hydrolysis, drastically lowering the 1180° peel strengths of the cleaved linear polymers between 75 and 95 percent.

Branched poly (EHA) PSAs containing 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA), as well as poly(EHA-co-HEMA), were synthesized and modified with photoactive functional groups. Cinnamate functionalized PSAs underwent photocrosslinking under UV light, leading to significant losses in 180° peel strengths. The acrylate functionalized PSAs were mixed with a photoinitiator, and following crosslinking under visible light, these PSAs exhibited excellent deactivation characteristics.

Poly(methyl methacrylate) containing aliphatic diols were synthesized via anionic polymerization utilizing the novel protected functional co-initiator 1,1-bis-, 4'-(2-(tertbutyldimethylsilyloxy) ethoxy)phenylethylene (BTOPE). Following the coupling of BTOPE with sec-butyl lithium, methyl methacrylate was polymerized in living fashion at -78 °C in THF. A broad molecular weight range of BTOPE-initiated PMMA samples were synthesized, and molecular weight distributions were as low as 1.03 were observed. Hydrolytic deprotection of the protecting groups resulted in α,α-dihydroxy PMMA.

The graft macromonomers poly(tert-butyl styrene-block-styrene) methacrylate and poly(styrene-block-tert-butyl styrene) methacrylate were synthesized from the corresponding diblock copolymer alcohols utilizing acid chloride chemistry. Excellent molecular weight control, narrow molecular weight distributions, and perfect crossover were observed in both types of diblock polymers. The macromonomers were copolymerized with methyl methacrylate via solution free-radical copolymerization. The styrene blocks in the purified graft copolymers were selectively sulfonated using acetyl sulfate.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lars-Kilian-Dissertation.pdf 2.15 Mb 00:09:56 00:05:06 00:04:28 00:02:14 00:00:11

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.