Title page for ETD etd-10172006-163100


Type of Document Master's Thesis
Author Reusch, David Clayton
Author's Email Address dreusch@vt.edu
URN etd-10172006-163100
Title High Frequency, High Current Integrated Magnetics Design and Analysis
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Lee, Fred C. Committee Chair
Wang, Fei Fred Committee Member
Xu, Ming Committee Member
Keywords
  • voltage regulator module
  • integrated magnetics
  • leakage inductance
  • self-driven
Date of Defense 2006-10-13
Availability unrestricted
Abstract
The use of computers in the modern world has become prevalent in all aspects of life. The size of these machines has decreased dramatically while the capability has increased exponentially. A special DC-DC converter called a VRM (Voltage Regulator Module) is used to power these machines. The VRM faces the task of supplying high current and high di/dt to the microprocessor while maintaining a tight load regulation. As computers have advanced, so have the VRM's used to power them. Increasing the current and di/dt of the VRM to keep up with the increasing demands of the microprocessor does not come without a cost. To provide the increased di/dt, the VRM must use a higher number of capacitors to supply the transient energy. This is an undesirable solution because of the increased cost and real estate demands this would lead to in the future. Another solution to this problem is to increase the switching frequency and control bandwidth of the VRM. As the switching frequency increases the VRM is faced with efficiency and thermal problems. The current buck topologies suffer large drops in efficiency as the frequency increases from high switching losses.

Resonant or soft switching topologies can provide a relief from the high switching loss for high frequency power conversion. One disadvantage of the resonant schemes is the increased conduction losses produced by the circulating energy required to produce soft switching. As the frequency rises, the additional conduction loss in the resonant schemes can be smaller than the switching loss encountered in the hard switched buck. The topology studied in this work is the 12V non-isolated ZVS self-driven presented in [1]. This scheme offered an increased efficiency over the state of the art industry design and also increased the switching frequency for capacitor reduction. The goal of this research was to study this topology and improve the magnetic design to decrease the cost while maintaining the superior performance.

The magnetics used in resonant converters are very important to the success of the design. Often, the leakage inductance of the magnetics is used to control the ZVS or ZCS switching operation. This work presents a new improved magnetic solution for use in the 12V non-isolated ZVS self-driven scheme which increases circuit operation, flexibility, and production feasibility. The improved magnetic structure is simulated using 3D FEA verification and verified in hardware design.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Reusch_thesis_11_1_06.pdf 2.19 Mb 00:10:09 00:05:13 00:04:34 00:02:17 00:00:11

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.