Title page for ETD etd-10202005-102839


Type of Document Dissertation
Author Liao, Kin
URN etd-10202005-102839
Title Tensile and uniaxial/multiaxial fatigue behavior of ceramic matrix composites at ambient and elevated temperatures
Degree PhD
Department Materials Engineering Science
Advisory Committee
Advisor Name Title
No Advisors Found
Keywords
  • Ceramic-matrix composites Fatigue
Date of Defense 1994-10-05
Availability restricted
Abstract

Increasing use of fiber reinforced ceramic matrix composites (CMC's) materials is needed, especially for hostile environments such as elevated temperatures. However, some fundamental issues regarding how these materials should be made for optimized performance are far from being settled. This study focuses on the modeling of the tensile behavior of unidirectional CMC using statistical methods and micro-mechanical analysis, based on laboratory observations. The model can be used to examine the effect of performance-influencing parameters on the strength of unidirectional CMC, thus shed light on how such material should be put together. The tensile strength model was then modified such that the behavior of unidirectioal CMC under cyclic tensile load can be studied. Results from the tensile strength model suggest that the Weibull modulus, m, of the strength of the reinforcing fibers and the fiber/matrix interfacial shear stress both have significant effect on the strength and toughness of the unidirectional composite: a higher m value and a lower interfacial shear stress result in a lower strength; a lower value of m and a higher interfacial shear stress results in a higher strength but lower toughness. Calculations from the tensile fatigue model suggest that a lower m value results in a longer fatigue life.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[BTD] LD5655.V856_1994.L54.pdf 12.33 Mb 00:57:04 00:29:21 00:25:41 00:12:50 00:01:05
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.