Title page for ETD etd-10212005-123025


Type of Document Dissertation
Author Kohers, Gerald
URN etd-10212005-123025
Title The use of neural networks in the combining of time series forecasts with differential penalty costs
Degree PhD
Department Management Science
Advisory Committee
Advisor Name Title
Rakes, Terry R. Committee Chair
Clayton, Edward R. Committee Member
Moore, Laurence J. Committee Member
Rees, Loren Paul Committee Member
Sumichrast, Robert T. Committee Member
Keywords
  • Economic forecasting Mathematical models.
  • Neural networks (Computer science)
  • Time-series analysis.
Date of Defense 1993-10-15
Availability restricted
Abstract
The need for accurate forecasting and its potential benefits are well established in the literature. Virtually all individuals and organizations have at one time or another made decisions based on forecasts of future events. This widespread need for accurate predictions has resulted in considerable growth in the science of forecasting. To a large degree, practitioners are heavily dependent on academicians for generating new and improved forecasting techniques.

In response to an increasingly dynamic environment, diverse and complex forecasting methods have been proposed to more accurately predict future events. These methods, which focus on the different characteristics of historical data, have ranged in complexity from simplistic to very sophisticated mathematical computations requiring a high level of expertise. By combining individual techniques to form composite forecasts in order to improve on the forecasting accuracy, researchers have taken advantage of the various strengths of these techniques. A number of combining methods have proven to yield better forecasts than individual methods, with the complexity of the various combining methods ranging from a simple average to quite complex weighting schemes.

The focus of this study is to examine the usefulness of neural networks in composite forecasting. Emphasis is placed on the effectiveness of two neural networks (i.e., a backpropagation neural network and a modular neural network) relative to three traditional composite models (i.e., a simple average, a constrained mathematical programming model, and an unconstrained mathematical programming model) in the presence of four penalty cost functions for forecasting errors.

Specifically, the overall objective of this study is to compare the shortterm predictive ability of each of the five composite forecasting techniques on various first-order autoregressive models, taking into account penalty cost functions representing four different situations. The results of this research suggest that in the vast majority of scenarios examined in this study, the neural network model clearly outperformed the other composite models.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[BTD] LD5655.V856_1993.K644.pdf 7.72 Mb 00:35:44 00:18:22 00:16:04 00:08:02 00:00:41
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.