Title page for ETD etd-102297-35832


Type of Document Master's Thesis
Author Hensirisak, Patcharee Jr.
Author's Email Address hpat@vt.edu
URN etd-102297-35832
Title Scale-Up the Use of a Microbubble Dispersion to Increase Oxygen Transfer in Aerobic Fermentation of Baker's Yeast
Degree Master of Science
Department Biological Systems Engineering
Advisory Committee
Advisor Name Title
Cundiff, John S. Committee Chair
Diehl, Kenneth C. Committee Member
Velander, William H. Committee Member
Keywords
  • Microbubble Dispersion (MBD)
  • Colloidal Gas Aphron (CGA)
  • Oxygen Transfer Rate
  • Aerobic fermentation
Date of Defense 1997-10-16
Availability unrestricted
Abstract
A microbubble dispersion (MBD) was used to supply oxygen for an aerobic fermentation of Baker's yeast. The 1-liter microbubble dispersion generator supplied bubbles for 20-liter and 50-liter working volume fermentations in a 72-liter pilot scale fermenter. The microbubbles were stabilized by the surfactants naturally present in the culturing broth medium. The growth patterns of yeast Saccharomyces cerevisiae, cultured at agitation speeds of 150 rpm and 500 rpm, were compared for oxygen supplied by ordinary air sparging and by MBD sparging. Both air sparged and MBD systems were supplied air at equivalent volumetric flow rates.

The volumetric oxygen transfer coefficients (KLa) were estimated by the yield coefficient method. The KLa values increased from 142.5 to 458.3 h-1 and from 136.1 to 473.3 h-1 for 20- and 50- liter runs, respectively, as the agitation speed was increased from 150 to 500 rpm in the ordinary air sparged fermentations. The oxygen transfer coefficients in the MBD sparged fermentations were found to be independent of the fermenter agitation speed at approximately 480 h-1 for 20-liter runs and 340 h-1 for 50-liter runs. The growth rates for MBD at 150 rpm were essentially equivalent with air sparged fermentations at 500 rpm. The total power consumption per unit volume of broth for the 150 rpm, MBD fermentation was 68% lower than the 500 rpm, air sparged run for the 20-liter fermentations and was 55% lower for the 50-liter fermentations.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis.pdf 541.65 Kb 00:02:30 00:01:17 00:01:07 00:00:33 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.