Type of Document Dissertation Author Liu, Rongsheng URN etd-10242005-124058 Title Global existence in L1 for the square-well kinetic equation Degree PhD Department Mathematics Advisory Committee

Advisor Name Title Greenberg, William Committee Chair Beattie, Christopher A. Committee Member Hagedorn, George A. Committee Member Klaus, Martin Committee Member Zweifel, Paul F. Committee Member Keywords

- Kinetic theory of gases Mathematical models
Date of Defense 1993-04-04 Availability restricted AbstractAn attractive square-well is incorporated into the Enskog equation, in order to model the' kinetic theory of a moderately dense gas with intermolecular potential. The existence of solutions to the Cauchy problem in L 1. global in time and for arbitrary initial data. is proved.

A simple derivation of the square-well kinetic equation is given. Lewis's method is used~ which starts from the Liouville equation of statistical mechanics. Then various symmetries of the collisional integrals are established. An H-theorem for entropy, mass, and momentum conservation is obtained, as well as an energy estimate, and key gain-loss estimates.

Approximate equations for the square-well kinetic equatioll are constructed that preserve symmetries of the collisional integral. Existence of nonnegative solutions of the approximate equations and weak compactness are obtained. The velocity averaging lemma of Golse is then a principal tool in demonstrating the convergence of the approximate solutions to a solution of the renormalized square well kinetic equation. The existence of weak solution of the irutial value problem for the squarewell kinetic equation is thus proved.

Files

Filename Size Approximate Download Time (Hours:Minutes:Seconds)

28.8 Modem 56K Modem ISDN (64 Kb) ISDN (128 Kb) Higher-speed Access LD5655.V856_1993.L579.pdf2.13 Mb 00:09:50 00:05:03 00:04:25 00:02:12 00:00:11 next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by
( Author |
Department )

If you have questions or technical problems, please Contact DLA.