Title page for ETD etd-110899-142510


Type of Document Master's Thesis
Author Smith, Amie Michelle
Author's Email Address aimes@vt.edu
URN etd-110899-142510
Title Prediction and Measurement of Thermal Exchanges within Pyranometers
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Mahan, James Robert Committee Chair
Haeffelin, Martial P. Committee Member
Thole, Karen A. Committee Member
Keywords
  • zero offset
  • filter emission
  • shortwave radiometers
  • pyranometer
Date of Defense 1999-10-28
Availability unrestricted
Abstract
The Eppley Precision Spectral Pyranometer (PSP) is a shortwave radiometer that is widely used in global networks to monitor solar irradiances at the earth's surface. Within the instrument, a blackened surface is in intimate thermal contact with the hot junction of a thermopile. The cold junction of the thermopile communicates thermally with the large thermal capacitance of the instrument body, which acts as a heat sink. Radiation arrives at the blackened surface through one or two hemispherical dome-shaped filters that limit the instrument response to the solar spectrum. The voltage developed by the thermopile is then interpreted in terms of the incident irradiance.

Measurements taken with the pyranometer are compared with results from theoretical models. Discrepancies between model results and measurements are used to isolate inaccuracies in the optical properties of the atmosphere used in the models. As the accuracy of the models increases, the reliability of the measurements must be examined in order to assure that the models keep up with reality. The sources of error in the pyranometer are examined in order to determine the accuracy of the instrument.

Measurements obtained using the pyranometer are known to be influenced by environmental conditions such as ambient temperature, wind, and cloud cover [Bush, et al., 1998]. It is surmised that at least some of the observed environmental variability in these data is due to parasitic thermal exchanges within the instrument [Haeffelin et al., 1999]. Thermal radiation absorbed and emitted by the filters, as well as that reflected and re-reflected among the internal surfaces, influences the net radiation at the detector surface and produces an offset from the signal that would result from the incident shortwave radiation alone. Described is an ongoing effort to model these exchanges and to use experimental results to verify the model.

The ultimate goal of the work described is to provide reliable protocols, based on an appropriate instrument model, for correcting measured shortwave irradiance for a variable thermal radiation environment.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Chapter_1.pdf 39.93 Kb 00:00:11 00:00:05 00:00:04 00:00:02 < 00:00:01
  Chapter_2.pdf 27.27 Kb 00:00:07 00:00:03 00:00:03 00:00:01 < 00:00:01
  Chapter_3.pdf 102.07 Kb 00:00:28 00:00:14 00:00:12 00:00:06 < 00:00:01
  Chapter_4.pdf 232.96 Kb 00:01:04 00:00:33 00:00:29 00:00:14 00:00:01
  Chapter_5.pdf 112.24 Kb 00:00:31 00:00:16 00:00:14 00:00:07 < 00:00:01
  Chapter_6.pdf 99.25 Kb 00:00:27 00:00:14 00:00:12 00:00:06 < 00:00:01
  Chapter_7.pdf 10.43 Kb 00:00:02 00:00:01 00:00:01 < 00:00:01 < 00:00:01
  etd.pdf 18.87 Kb 00:00:05 00:00:02 00:00:02 00:00:01 < 00:00:01
  References.pdf 7.71 Kb 00:00:02 00:00:01 < 00:00:01 < 00:00:01 < 00:00:01
  Vita.pdf 4.87 Kb 00:00:01 < 00:00:01 < 00:00:01 < 00:00:01 < 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.