Title page for ETD etd-11092012-040227


Type of Document Master's Thesis
Author Hsu, Robert Y
URN etd-11092012-040227
Title Elasto-plastic stress analysis of curved structures with rectangular section
Degree Master of Science
Department Structural Engineering
Advisory Committee
Advisor Name Title
Rogers, Grover L. Committee Chair
Morris, Henry M. Committee Member
Keywords
  • Stress-strain curves
Date of Defense 1959-05-05
Availability restricted
Abstract

Since the Eighteenth century, a great amount of research has been done using the elastic analysis technique in the field of curved structures. Recently the question of behavior beyond the yielding range has become increasingly important. By applying the methods of plastic analysis, the collapse load of a structure can be determined, and also the stress distribution and the deflection, just before collapse, can be calculated. However the evolution of the stress distribution and the deflection at any section of the structure between the load causing first yielding and the collapse load is still an unsolved problem.

Concerning the problem of evolution of the stress distribution in the inelastic range, most literature relies on the simple plastic theory in which the effect of the axial force on the formation of a plastic hinge is neglected. In fact this conception is in serious error in some cases, especially when the curved structure is a shallow arch, the stresses developed are apparently governed by the axial force. Literature considering the combined effects of bending moment and axial force is very rare.

In this thesis, the author proposes a new method, incorporating effects of both axial force and bending moment, of determining the evolution of stress distributions and the deflections in the inelastic range. The thesis includes three parts. In the first to parts, the theory for the stress analysis and for the deflection of a rectangular section is presented. The third part contains three examples to illustrate the use of the new method in practical engineering problems.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1959.H78.pdf 2.41 Mb 00:11:08 00:05:43 00:05:00 00:02:30 00:00:12
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.