Title page for ETD etd-11102000-17320058

Type of Document Master's Thesis
Author Chapman, Michael Wayne
URN etd-11102000-17320058
Title A 60 Ghz Mmic 4x Subharmonic Mixer
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Raman, Sanjay Committee Chair
Pratt, Timothy J. Committee Member
Sweeney, Dennis G. Committee Member
  • integrated circuit
  • mixer
  • 60 GHz
  • V-band
  • finite ground coplanar waveguide
  • mm-wave
  • subharmonically pumped
  • subharmonic
Date of Defense 2000-10-31
Availability unrestricted
In this modern age of information, the demands on data transmission networks for greater capacity, and mobile accessibility are increasing drastically. The increasing demand for mobile access is evidenced by the proliferation of wireless systems such as mobile phone networks and wireless local area networks (WLANs). The frequency range over which an oxygen resonance occurs in the atmosphere (~58-62 GHz) has received recent attention as a possible candidate for secure high-speed wireless data networks with a potentially high degree of frequency reuse. A significant challenge in implementing data networks at 60 GHz is the manufacture of low-cost RF transceivers capable of satisfying the system requirements. In order to produce transceivers that meet the additional demands of high-volume, mobility, and compactness, monolithic millimeter wave integrated circuits (MMICs) offer the most practical solution.

In the design of radio tranceivers with a high degree of integration, the receiver front-end is typically the most critical component to overall system performance. High-performance low-noise amplifiers (LNAs) are now realizable at frequencies in excess of 100 GHz, and a wide variety of mixer topologies are available that are capable of downconversion from 60 GHz. However, local oscillators (LOs) capable of providing adequate output power at mm-wave frequencies remain bulky and expensive. There are several techniques that allow the use of a lower frequency microwave LO to achieve the same RF downconversion. One of these is to employ a subharmonic mixer. In this case, a lower frequency LO is applied and the RF mixes with a harmonic multiple of the LO signal to produce the desired intermediate frequency (IF).

The work presented in this thesis will focus on the development of a GaAs MMIC 4-X subharmonic mixer in Finite Ground Coplanar (FGC) technology for operation at 60 GHz. The mixer topology is based on an antiparallel Schottky diode pair. A discussion of the mechanisms behind the operation of this circuit and the methods of practical implementation is presented. The FGC transmission lines and passive tuning structures used in mixer implementation are characterized with full-wave electromagnetic simulation software and 2-port vector network analyzer measurements. A characterization of mixer performance is obtained through simulations and measurement. The viability of this circuit as an alternative to other high-frequency downconversion schemes is discussed. The performance of the actual fabricated MMIC is presented and compared to currently available 60 GHz mixers. One particular MMIC design exhibits an 11.3 dB conversion loss at an RF of 58.5 GHz, an LO frequency of 14.0 GHz, and an IF of 2.5 GHz. This represents excellent performance for a 4X Schottky diode mixer at these frequencies. Finally, recommendations toward future research directions in this area are made.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis.pdf 8.65 Mb 00:40:01 00:20:35 00:18:00 00:09:00 00:00:46

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.