Title page for ETD etd-11142005-222336

Type of Document Master's Thesis
Author Sanders, Darius Demetri
Author's Email Address dasande1@vt.edu
URN etd-11142005-222336
Title An Investigation of Controlled Oscillations in a Plasma Torch for Combustion Enhancement
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
O'Brien, Walter F. Jr. Committee Chair
Schetz, Joseph A. Committee Member
Vlachos, Pavlos P. Committee Member
  • plasma torch
  • oscillation
  • unsteady combustion
  • unsteady shocks
Date of Defense 2005-11-02
Availability unrestricted
The oscillating plasma torch is proposed as a potential device that will produce an oscillating shock and resulting control of the supersonic combustion process. This research will capitalize on previous results [Gallimore, 1998] which indicate that the plasma torch oscillations originate from the inherent oscillations of the voltage applied to the torch. The aim of this research is to thoroughly investigate the oscillation behavior of the plasma torch with the plan of ultimately controlling the oscillation at chosen frequencies. A modulating power system used for dynamic control of the plasma torch oscillation was designed and tested in quiescent conditions (no flow), Mach 2.4 cold supersonic flow, and Mach 2 heated supersonic flow conditions. The oscillating plasma torch used nitrogen feedstock and was operated over a frequency range of 2Hz- 4kHz. A dynamic torch model using the hybrid Mayr-Cassie electric arc model was developed to predict the plasma torch electric arc response at appropriate frequencies for interaction with supersonic combustion.

In quiescent conditions, the dynamic response of the plasma torch power system and plasma jet were characterized using signal processing techniques and high speed video imaging. High speed Schlieren images were used to determine the behavior of the oscillating plasma jet in Mach 2.4 cross flow and its influence on the induced shock structure. The unsteady nitrogen-fed torch was integrated with the flush walled 4-hole aerodynamic ramp injector using hydrogen and hydrocarbon fuels at the University of Virginia Aerospace Research Lab (ARL) heated Mach 2 supersonic flow. Unsteady pressure variations from the oscillating shock produced by the plasma torch were recorded using recess-mounted Kulite pressure transducers. Also, measurements of the static pressure of the combustion produced by the oscillating plasma torch were obtained.

The oscillating torch system performed well over a range of different flow conditions. It will enable active control input to the combustion process. The controllable unsteady blockage might provide a type shock interaction needed to increase turbulence and mixing augmentation [Kumar, et al. 1987].

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  0408sin1024hz3.avi 807.42 Kb 00:03:44 00:01:55 00:01:40 00:00:50 00:00:04
  0408triangle128hz1.avi 4.93 Mb 00:22:48 00:11:43 00:10:15 00:05:07 00:00:26
  126sin256HzVT.avi 1.05 Mb 00:04:52 00:02:30 00:02:11 00:01:05 00:00:05
  cap0004.mpg 6.57 Mb 00:30:24 00:15:38 00:13:40 00:06:50 00:00:35
  d0408run35.wav 286.73 Kb 00:01:19 00:00:40 00:00:35 00:00:17 00:00:01
  d0408run46.wav 286.73 Kb 00:01:19 00:00:40 00:00:35 00:00:17 00:00:01
  DariusSandersMSThesis.pdf 18.79 Mb 01:27:00 00:44:44 00:39:09 00:19:34 00:01:40
  feedstock.avi 1.65 Mb 00:07:36 00:03:55 00:03:25 00:01:42 00:00:08
  ShockPT_movie.avi 6.71 Mb 00:31:03 00:15:58 00:13:58 00:06:59 00:00:35

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.