Title page for ETD etd-11142008-092001


Type of Document Master's Thesis
Author Detrie, Theresa A.
URN etd-11142008-092001
Title Prehnite at the Atomic Scale: Al/Si Ordering, Hydrogen Environment, and High-Pressure Behavior
Degree Master of Science
Department Geosciences
Advisory Committee
Advisor Name Title
Ross, Nancy L. Committee Chair
Angel, Ross J. Committee Member
Ballaran, Tiziana Boffa Committee Member
Keywords
  • prehnite
  • high-pressure
  • X-ray diffraction
  • neutron diffraction
  • spectroscopy
  • hydrogen
Date of Defense 2008-11-03
Availability unrestricted
Abstract
The mineral prehnite, Ca2(Al,Fe,Mn)(AlSi3O10)(OH)2, is a layered structure consisting of double-sheets of (Al,Si)O4 and SiO4 tetrahedra alternating with single sheets of AlO4(OH)2 octahedra. To understand the ordering in the structure and differences between various samples of prehnite, single-crystal X-ray diffraction data at ambient conditions were collected on four single crystals of prehnite from different localities. The positions of the H atoms have been determined for the first time, from a combination of X-ray and neutron diffraction data.

The equation of state and high-pressure behavior of prehnite have been investigated using single-crystal X-ray diffraction up to 9.75(3) GPa. A second-order Birch–Murnaghan equation of state fit to the isothermal P-V data to 8.7 GPa yields a bulk modulus, K = 109.29(18) GPa. Structural data collected at high pressures indicate that the structure compresses uniformly. Above 8.7 GPa there is additional softening of the volume and the b-axis related to polyhedral tilting. However, the average structure is maintained across the transition.

Ambient and high-pressure Raman and synchrotron infrared spectra were collected from 1 bar to 20 GPa. Raman spectra measured at ambient conditions of four prehnite crystals with different compositions confirmed that there are no structural changes with different compositions. High-pressure results showed the majority of modes shift to higher frequencies (in a smooth, linear fashion) with increasing pressure. The greatest change in the spectra is the softening of the modes in the OH-stretching region above 9 GPa, thought to be related to the polyhedral tilting around the H environment.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ETD_t.detrie_MSv6.pdf 1.61 Mb 00:07:27 00:03:49 00:03:21 00:01:40 00:00:08

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.