Title page for ETD etd-11152002-161130


Type of Document Dissertation
Author Crowder, David Willis
URN etd-11152002-161130
Title Reproducing and Quantifying Spatial Flow Patterns of Ecological Importance with Two-Dimensional Hydraulic Models
Degree PhD
Department Civil Engineering
Advisory Committee
Advisor Name Title
Diplas, Panayiotis Committee Chair
Kibler, David F. Committee Member
Loganathan, G. V. Committee Member
Orth, Donald J. Committee Member
Schetz, Joseph A. Committee Member
Keywords
  • ecologically important flow patterns
  • reproducing and quantifying flow patterns
  • spatial flow patterns
  • hydraulic models
  • two-dimensional models
Date of Defense 2002-04-25
Availability unrestricted
Abstract
Natural streams typically have highly complex flow patterns. Velocity gradients, circulation zones, transverse flows, and other flow patterns are created in the presence of topographic features (e.g. exposed boulders, bars). How flow complexity influences a stream's ecological health and morphological stability, as well as how flow complexity responds to changes in hydrologic conditions, is poorly understood. One-dimensional (1-D) hydraulic models and two-dimensional (2-D) models that do not explicitly incorporate meso-scale topographic features are not capable of adequately reproducing the flow patterns found in channels having complex topography. Moreover, point measurements of depth and velocity, which are used to describe hydraulic conditions in habitat suitability studies, cannot be used to characterize spatially varying flow patterns of biological importance.

A general methodology for incorporating meso-scale topography into 2-D hydraulic models is presented. The method provides a means of adequately reproducing spatial flows of interest to riverine researchers. The method is developed using 2-D model simulations of a reach of the North Fork of the Feather River in California. Specifically, the site is modeled with and without bathymetry data on exposed boulders found within the site. Results show that the incorporation of boulder topography and an adequately refined mesh are necessary for reproducing velocity gradients, transverse flows, and other spatial flows.

These simulations are also used to develop and evaluate three spatial hydraulic metrics designed to distinguish between locations having uniform and non-uniform flow conditions. The first two metrics describe local variations in energy/velocity gradients, while the third metric provides a measure of the flow complexity occurring within an arbitrary area. The metrics based on principles of fluid mechanics (kinetic energy, vorticity, and circulation) can be computed in the field or with 2-D hydraulic model results. These three metrics, used in conjunction with detailed 2-D hydraulic model results, provide engineers, biologist, and water resource managers a set of tools with which to evaluate the importance of flow complexity within rivers. A conceptual model describing how such a tool can be used to help design channels being restored, better evaluate stream habitat, and evaluate how hydrologic changes in a watershed impact hydraulic conditions and concomitant habitat conditions is provided.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  crowderphd.pdf 1.94 Mb 00:08:58 00:04:36 00:04:02 00:02:01 00:00:10

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.