Title page for ETD etd-11172012-040210


Type of Document Master's Thesis
Author MacKay, James D.
URN etd-11172012-040210
Title Analytical method for turbine blade temperature mapping to estimate a pyrometer input signal
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
O'Brien, Walter F. Jr. Committee Chair
Moses, Hal L. Committee Member
Wood, Henry L. Committee Member
Keywords
  • Aerothermodynamics
Date of Defense 1987-05-05
Availability restricted
Abstract

The purpose of this thesis is to develop a method to estimate local blade temperatures in a gas turbine for comparison with the output signal of an experimental pyrometer. The goal of the method is to provide a temperature measurement benchmark based on a knowledge of blade geometry and engine operating conditions. A survey of currently available methods is discussed including both experimental and analytical techniques.The purpose of this thesis is to develop a method to estimate local blade temperatures in a gas turbine for comparison with the output signal of an experimental pyrometer. The goal of the method is to provide a temperature measurement benchmark based on a knowledge of blade geometry and engine operating conditions. A survey of currently available methods is discussed including both experimental and analytical techniques.

An analytical approach is presented as an example, using the output from a cascade flow solver to estimate local blade temperatures from local flow conditions. With the local blade temperatures, a grid is constructed which maps the temperatures onto the blade. A predicted pyrometer trace path is then used to interpolate temperature values from the grid, predicting the temperature history a pyrometer would record as the blade rotates through the pyrometer line of sight. Plotting the temperature history models a pyrometer input signal. An analytical approach is presented as an example, using the output from a cascade flow solver to estimate local blade temperatures from local flow conditions. With the local blade temperatures, a grid is constructed which maps the temperatures onto the blade. A predicted pyrometer trace path is then used to interpolate temperature values from the grid, predicting the temperature history a pyrometer would record as the blade rotates through the pyrometer line of sight. Plotting the temperature history models a pyrometer input signal.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1987.M334.pdf 2.73 Mb 00:12:38 00:06:29 00:05:41 00:02:50 00:00:14
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.