Title page for ETD etd-11212012-040103


Type of Document Master's Thesis
Author DiRenzo, Michael T.
URN etd-11212012-040103
Title A geometric analysis of model reduction of linear systems
Degree Master of Science
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Lindner, Douglas K. Committee Chair
Baumann, William T. Committee Member
VanLandingham, Hugh F. Committee Member
Keywords
  • Linear systems
Date of Defense 1989-06-05
Availability restricted
Abstract

In this thesis we study the model reduction problem in terms of the geometric concepts of linear system theory. By appropriate selection of reducing subspaces, useful lower-order system models can be achieved. The reducing subspaces can be chosen as parts of a system which are "most” and “least” controllable or observable; retaining, of course, the most controllable/observable subspace for model reduction. We review results showing how several measures of controllability and observability can provide this information. Balanced, Jordan canonical form, and dual GHR representations are shown to be state space realizations which naturally identify the reducing subspaces based on these measures. Several results unifying these methods are given.

In another approach, we show that the reducing subspaces can be chosen such that after completing model reduction, a number of Markov parameters and time moments of the full system are retained by the reduced order model. We show how the dual GHR can be used as a tool which identifies these subspaces and state space realizations which naturally display them. Along these lines, a connection between model reduction in the state space and second-order systems is established, particulary the reduction of structures via the Lanczos algorithm.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1989.D574.pdf 5.03 Mb 00:23:18 00:11:59 00:10:29 00:05:14 00:00:26
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.