Title page for ETD etd-11212012-040247


Type of Document Master's Thesis
Author Bebout, William Roach
URN etd-11212012-040247
Title Zero Quantum Nuclear Magnetic Resonance experiments utilizing a toroid cell and coil
Degree Master of Science
Department Chemistry
Advisory Committee
Advisor Name Title
Dorn, Harry C. Committee Chair
Schug, John C. Committee Member
Taylor, Larry T. Committee Member
Keywords
  • Nuclear magnetic resonance
Date of Defense 1989-04-15
Availability restricted
Abstract

Over the past ten to fifteen years the area of Nuclear Magnetic Resonance (NMR) Spectroscopy has seen tremendous growth. For example, in conjunction with multiple quantum NMR, molecular structural mapping of a compound can be easily performed in a two dimensional (2D) experiment.

However, only two kinds of detector coils have been typically used in NMR studies. These are the solenoid coil and the Helmholtz coil. The solenoid coil was very popular with the permanent and electromagnet NMR instruments. With the advent of the superconducting magnets the popularity shifted to the Helmholtz coil, which remains the most common coil today for superconducting magnets. The Helmholtz coil, however, has been shown to have lower sensitivity than the solenoid coil. Hoult (1) has pointed out that potentially the Helmholtz coil represents a loss of signal·to-noise (S/N) by a factor of three in comparison to the solenoid coil. Since Hoult’s original work, alternate methods for optimizing S/N have been explored. One of these has been the suggestion of toroid shaped resonators for NMR studies (2). A potential advantage of a toroid cell and coil is the confinement of the B1 field to the torus region.It has been suggested that the toroid has a potential (S/N) advantage of 3.9 - 4.5 in comparison to the conventional Helmholtz cell (3). Since Zero Quantum (ZQ) experiments are independent of B0 homogeneity, 2D ZQ experiments provide a convenient method of comparing the toroid and Helmholtz coils.

In these zero quantum studies, the toroid and Helmholtz probes will be characterized in terms of several factors 1) B1 homogeneity, 2) B0 homogeneity, 3) flip angle dependence, and 4) sensitivity. Finally, the two probes will be contrasted using spectral analysis in the spin—spin mapping of a simple molecule (n—butanol) and a complex molecular system (taxol).

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1989.B425.pdf 3.07 Mb 00:14:12 00:07:18 00:06:23 00:03:11 00:00:16
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.